Читайте также:
|
|
Для определения многих физических свойств природных газов используется уравнение состояния.
Уравнением состояния называется аналитическая зависимость между параметрами, описывающими изменение состояние вещества. В качестве таких параметров используется давление, температура, объём.
Состояние газа при нормальных и стандартных условиях описывается уравнением Менделеева – Клапейрона:
, (2.17)
где Р – абсолютное давление, Па;
V – объём, м3;
Q – количество вещества, кмоль;
Т – абсолютная температура, К;
R – универсальная газовая постоянная, Па×м3/(кмоль×град).
На основе уравнения состояния газа можно рассчитать много параметров для системы нефтяного газа: плотность, мольный объём, количество молекул, число молекул, парциальные давления и др., если рассматривать уравнение состояния газа для 1 моля, т.е., Q = 1 моль. С учетом этого, уравнение состояния газа можно преобразовать следующим образом:
P·V = ∑N·R·T. (2.18)
При ∑N = 1 моль, следует, что: P·V = R·T. Зная, что масса (m) одного моля идеального газа равна его молекулярной массе (М), умножив левую и правую части на молекулярную массу и массу газа, соответственно получим:
P·V·M = m·R·T. (2.19)
Поделив обе части на V·R·T: и преобразовав 2.19, получим выражение для расчета плотности:
P·M / R·T = m / V, m / V = M·P / R·T, r = M·P / R·T. (2.20)
Рассмотрим пример. Дан один моль метана CH4.
Найти его плотность?
Решение. Зная, что молекулярная масса метана равна 16 г/моль и метан занимает объём при н.у. = 22,414 л, а при с.у. = 24,055 л, найдем:
1. rCH4 (н.у.) = 16/22,414 = 0,717 (г/л);
2. rCH4 (с.у.) = 16/24,055 = 0,665 (г/л).
Плотность смеси газовых компонентов рассчитывают с учетом средней молекулярной массы смеси газа (Mсм), как отношение его молекулярной массы к его мольному объёму (Vм). Например, при нормальных условиях (н.у.) она будет рассчитываться по выражению:
rсм = Mсм / 22,414. (2.21)
Из расчетов и из выражений 2.20, 2.21 следует, что плотность газа с возрастанием температуры будет уменьшаться, а с возрастанием давления (2.20) будет расти.
Рассмотрим другой пример. О пределить плотность метана СН4 при избыточном давлении, например при давлении 3,5 атм и температуре 0°С. Решение. В этом случае общее давление в системе будет равно:
Р = (3,5 + 1) = 4 (атм).
Зная, что молекулярная масса метана = 16 г/моль, универсальная газовая постоянная (R) = 0,08206 атм•л/(К•моль), а температура (T) = 273,15 К, найдем плотность метана:
rCH4 = Р·М / R·T = (3,5 + 1)·16 /0,08206 ·273,15 = 3,21 (г/л).
Относительная плотность газов рассчитывается по отношению к плотности воздуха, определенного при тех же условиях:
. (2.22)
При нормальных условий (н.у.) плотность воздуха (ρвозд)» 1,293; при стандартных условий (с.у.) - ρвозд» 1,205.
Если плотность газа (ρо) задана при атмосферном давлении = 0,1013 МПа, то пересчёт её на другое давление (Р) при той же температуре для идеального газа производится по формуле:
. (2.23)
Рассмотрим пример. Для условий задачи, рассмотренной выше (см. пример раздела 2.2) можно рассчитать абсолютные (r) и относительные (ρосм) плотности смеси, используя правое выражение (2.16) для расчета молекулярной массы:
Мсм = 100 / (36,5 / 16 +17,2 / 30 +19,8 / 44 +14,7 / 58 +11,8 / 72)
= 26,874 (кг/кмоль);
rcv = 26,874 / 22,41 = 1,119 (кг/м3);
ρосм (н.у.) = 1,119 / 1,293 = 0,927.
Аналогично из (2.20) находится и выражение для мольного объёма:
V = R ·T / P. (2.24)
Отсюда, мольный объём при давлениях равному 1 атм или близких к атмосферному и для физических процессов, когда не происходит изменения числа молей в системе оценивается соотношением:
V = R·T, (2.25)
где R – универсальна газовая постоянная, R = 0,08206 атм·л/(К·моль);
Т – температура, К;
Рассмотрим пример. Найти вид зависимости изменения мольного объёма газа от температуры V = f(T).
Решение. Воспользуемся выражением 2.25 и получим объём, занимаемый одним молем идеального газа при условиях задачи:
Vн.у. = 0,08206•273,15 = 22,414 (л),
Vс.у. = 0,08206•293,15 = 24,055 (л).
Любой газ при нормальных условиях (н.у. Þ Т = 0оС и Р = 760 мм рт. ст.) занимает объём равный 22,414 м3, а при стандартных (с.у. Þ Т = 20 оС и Р = 760 мм рт. ст.) объём равный 24,055 м3.
С увеличением температуры мольный объём газа увеличивается. Мольный объём газов с возрастанием температуры будет расти, а с возрастанием давления (см. 2.24) уменьшаться.
У этого уравнения есть свои граничные условия. Оно справедливо для описания поведения газов при давлениях близких к атмосферному (от 1 до 10–12 атм) и при температурах до 20оС. При повышенном давлении газ сжимается и его состояние отличается от поведения идеальных газов.
Дата добавления: 2015-07-08; просмотров: 140 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Углеводородных газов | | | Состояние реальных газов |