Читайте также: |
|
Для протекания процесса шлакообразования характерно явление вспенивания шлака, сопровождающееся резким подъемом уровня шлака над металлической ванной, существенным снижением его плотности, ухудшением теплопроводности и пр. Вспенивание шлака заметно влияет на протекание ряда процессов; оно может быть как полезным (при вспененном шлаке снижается вынос из ванны плавильной пыли, так как часть пыли задерживается в шлаке), так и вредным, нежелательным, особенно в агрегатах подового типа (мартеновских, двух-ванных печах), в которых передача тепла осуществляется сверху вниз, через шлак.
Согласно определениям, принятым в коллоидной химии, пены представляют собой высококонцентрированные эмульсии газа в жидкости, обладающие определенной структурой и жесткостью, когда ячейки образованы газом, объем которого превышает 74 % (при объеме газа меньше 74 % системы называют эмульсиями газа в жидкости).
Вспенивание шлака в некоторых чертах подчинено тем же закономерностям, что и вспенивание любых жидкостей. Процесс образования пены в значительной степени зависит от скорости прохождения объемов газа через поверхность жидкости.
При малых значениях критерия Рейнольдса высота слоя пены Я определяется скоростью поступления снизу газа v (м/с) и стойкостью (устойчивостью) пены (с), т. е. Н= v . Поскольку из сталеплавильных ванн выделяются газы, состоящие в основном из СО, образующегося в результате окисления углерода, скорость прохождения через шлак газов v определяется в основном скоростью окисления углерода vc.
Единой теории устойчивости пен пока не существует. Можно отметить лишь следующее.
1. Процесс пенообразования жидкостей связан с возникновением в массе жидкости газообразной дисперсной фазы и выделением ее на поверхность в виде слоя пены.
2. Высота слоя пены зависит от количества пузырей пены, образующихся в единицу времени на поверхности, и от продолжительности существования единичных пузырей (устойчивости пены).
3. На процесс образования и устойчивость пены в той или иной степени влияют состав раствора и концентрация растворенного вещества, поверхностное натяжение и вязкость, температура раствора, степень дисперсности пены, гидродинамика процесса.
4. Разрушение пены при отсутствии внешних сил происходит под действием избыточного давления поверхностных сил внутри пузырей (ячеек) и в результате утончения их стенок при стекании раствора, заключенного между адсорбционными слоями, под действием как силы тяжести, так и давления поверхностных слоев.
5. Пена как термодинамически неустойчивая система может существовать длительное время лишь в том случае, когда внутри нее происходят какие-либо процессы, упрочняющие составляющие пену пузыри и удлиняющие сроки их существования (увеличивающие стабильность пены); при наличии в растворе поверхностно-активных веществ стабилизация пены может происходить вследствие кинетического фактора стабилизации адсорбционных слоев — эффекта Гиббса—Меренгони1 (рис. 9.7). С повышением температуры стабильность пены снижается.
Общепризнанной теории, объясняющей причины вспенивания сталеплавильных шлаков, пока нет. Существуют различные точки зрения.
1 В данном случае под эффектом Гиббса-Меренгони понимают следующее: при растяжении жидкости в поверхностном слое уменьшается концентрация поверхностно-активных компонентов, что сопровождается соответствующим повышением межфазного натяжения. Если жидкость достаточно подвижна (вязкость ее мала), происходит интенсивное перемещение поверхностно-активных ионов в направлении участков с пониженной концентрацией поверхностно-активных компонентов (противоток жидкости в поверхностном слое) и утончение пленки замедляется (эффект Меренгони). Схема, поясняющая действие эффекта Меренгони, показана на рис. 9.7. Гиббс, рассматривая возможность повышения поверхностного натяжения при растягивании пленки жидкости вокруг пузыря, обращал внимание на то, что растянутый участок, имея более высокое поверхностное натяжение, стремится сжаться в большей степени, чем соседние нерастянутые участки, и отсасывает из них жидкость, восстанавливая свою первоначальную толщину. Такое сопротивление растяжению или стремление к сохранению первоначальной толщины пленки Гиббс называл эластичностью.
В том случае, когда скорость вытекания соизмерима со скоростью диффузии (или меньше) поверхностно-активных компонентов, действие этих эффектов можно не учитывать.
Рис. 9.7. Схемы расклинивающего (отталкивающего) действия одноименно заряженных ионов, расположенных на поверхности газовых пузырьков аа{ и bb\ (I), и эффекта Меренгони в поверхностных слоях ab и а'Ь', охватывающих газовые пузыри (заштрихованная часть — жидкость) (II)
В. Я. Явойский выделил следующие факторы, определяющие склонность шлака к вспениванию:
1. Поверхностная вязкость шлака, т. е. механическая прочность поверхностной пленки, определяемая, в свою очередь, концентрацией поверхностно-активных крупных анионов (кремнекислородных или кремнефосфористых комплексов).
2. Гетерогенность шлаков, присутствие в них хорошо смачиваемых шлаком (лиофильных) твердых частиц.
3. Содержание поверхностно-активных компонентов, вызывающих расклинивающий эффект и поверхностную диффузию в направлении только что образовавшихся участков пленки пузыря (эффект Меренгони).
4. Температура шлака (низкая температура определяет повышенные механическую прочность пленки, поверхностную вязкость шлака и замедленный характер растворения взвешенных в шлаке твердых частиц).
5. Интенсивность и характер газового потока, пронизывающего слой шлака (увеличение интенсивности газовыделения, а главное — степени дисперсности газовых пузырей, образующих поток, пронизывающий шлаковый расплав, приводит к росту вспениваемости шлака).
6. Химический состав шлака. В основных шлаках склонность к пенооб-разованию повышается при повышении концентрации SiO2 и Р2О5 и понижении истинной основности (т. е. основности, рассчитанной по концентрации растворенного оксида кальция). Присадка плавикового шпата в подвижных шлаках несколько повышает склонность шлаков к вспениванию в связи с повышением в шлаке концентрации поверхностно-активного иона F-. Повышение концентрации оксидов железа увеличивает склонность шлаков к вспениванию в результате стимулирующего действия на развитие подшлакового процесса окисления углерода, сопровождающегося образованием множества мелких пузырей, медленно всплывающих в шлаке.
7. Давление газовой среды над слоем шлака (повышение давления в плавильном пространстве печи, наличие настильной упругой струи факела, осаживающей пену, приводят к уменьшению ценообразования).
Наибольшей склонностью к вспениванию обладают шлаки с основностью 1,5-1,6 (рис. 9.8). Повышение в шлаке содержания оксидов железа и марганца способствует снижению склонности шлаков к вспениванию. Все мероприятия по ускорению шлакообразования для получения по расплавлении более благоприятной и более высокой основности способствуют уменьшению вспениваемости шлаков. К ним относятся различные приемы интенсивного перемешивания ванны, методы ускоренного нагрева, способы замены обычных шлакообразующих (известняка, железной руды) комплексными, заранее подготовленными флюсами (продукты, например, совместного обжига известняка, железной и марганцевой руд и др.), использования шлакообразующих в порошкообразном виде и т. д.
Технология ведения плавки стали в современных высокомощных дуговых электропечах включает операцию искусственного вспенивания шлака. Для этого на шлак или под шлак вводят (чаще вдувают) порошок кокса или каменного угля, инициируя протекание реакции окисления углерода непосредственно в шлаке. Образующиеся мелкие пузырьки СО обеспечивают интенсивное вспенивание шлака; соответственно создаются благоприятные условия для экранирования дуг, уменьшения облучения стен и свода печи и улучшения усвоения тепла ванной.
Дата добавления: 2015-07-08; просмотров: 166 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ШЛАКООБРАЗОВАНИЕ | | | СВОЙСТВА ШЛАКОВ |