Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Математическое ожидание и его свойства.

Читайте также:
  1. БЕЗОПАСНОСТЬ-ОЖИДАНИЕ
  2. Взаимоотношения с мужчинами: ожидание осуществления
  3. Виды ионизирующих излучений, их основные свойства.
  4. Высокие теплоизоляционные свойства.
  5. Г. Математическое приложение
  6. Гистологическая ткань. Определение. Классификация. Понятие о клеточных популяциях. Стволовые клетки и их свойства.
  7. Грунты и их технологические свойства. Определение объемов земляных работ.

Математическим ожиданием (или средним значением) дискретной случайной величины называется сумма произведений всех её возможных значение на соответствующие им вероятности.

X
P

 

 

Т.е., если сл. величина имеет закон распределения, то

называется её математическим ожиданием. Если сл. величина имеет бесконечное число значений, то математическое ожидание определяется суммой бесконечного ряда , при условии, что этот ряд абсолютно сходится (в противном случае говорят, что математическое ожидание не существует).

Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, то есть её отклонения от математического ожидания. Обозначается в русской литературе и (англ. variance) в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии, равный , называется среднеквадрати́чным отклоне́нием, станда́ртным отклоне́нием или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.\

Среднее квадратичное отклонение — это квадратный корень из среднего арифметического всех квадратов разностей между данными величинами и их средним арифметическим. Среднее квадратичное отклонение принято обозначать греческой буквой сигма σ:

1. σ =
 
(a 1a)2+(a 2a)2+ +(ana)2 n

 

 


Дата добавления: 2015-07-10; просмотров: 123 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Теорема умножения вероятностей| СПРАВКА 1

mybiblioteka.su - 2015-2024 год. (0.005 сек.)