Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теорема умножения вероятностей. Перед тем, как излагать теорему умножения вероятностей

Читайте также:
  1. II закон термодинамики. Теорема Карно-Клаузиуса
  2. Аксиомы теории вероятностей. Дискретные пространства элементарных исходов. Классическое определение вероятности
  3. Алгоритм письменного умножения
  4. Взаимосвязь между результатами и компонентами действий умножения и деления
  5. Вычислить вероятности событий, используя классическое определение вероятности или теоремы вероятностей.
  6. ГЛАВА V. МОРАЛЬНЫЙ АСПЕКТ ТЕОРИИ ВЕРОЯТНОСТЕЙ
  7. Доказательство. Теорема.

Перед тем, как излагать теорему умножения вероятностей, введем еще одно важное понятие: понятие о независимых и зависимых событиях.

Противоположные события.
Противоположными называют два единственно возможных события, образующих полную группу. Если одно из двух противоположных событий обозначено через A, то другое принято обозначать

 

Пример 1. Попадание и промах при выстреле по цели — противоположные события. Если А — попадание, то противоположное событие — промах.

Пример 2. Из ящика наудачу взята деталь. События «появилась стандартная деталь» и «появилась нестандартная деталь» — противоположные.

Формула Бернулли — формула в теории вероятностей, позволяющая находить вероятность появления события A при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений — сложения и умножения вероятностей — при достаточно большом количестве испытаний. Названа в честь выдающегося швейцарского математика Якоба Бернулли, выведшего формулу.

[править]Формулировка

Теорема: Если Вероятность p наступления события Α в каждом испытании постоянна, то вероятность того, что событие A наступит k раз в n независимых испытаниях, равна: , где .

 

 

формулу Пуассона. Эта формула определяется теоремой Пуассона.

Теорема. Если вероятность наступления события в каждом испытании постоянна и мала, а число независимых испытаний достаточно велико, то вероятность наступления события ровно раз приближенно равна

,(3.4)

где .

 

Теорема Муавра — Лапласа — одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Если при каждом из n независимых испытаний вероятность появления некоторого случайного события Е равна р (0<р<1) и m — число испытаний, в которых Е фактически наступает, то вероятность неравенства близка (при больших n) к значению интеграла Лапласа.

Формулировка

Если в схеме Бернулли n стремится к бесконечности, p (0 < p < 1) постоянно, величина ограничена равномерно по m и n , то

где , c > 0, c — постоянная.

Приближённую формулу

рекомендуется применять при n > 100 и npq > 20.

 

Дискретной называют случайную величину, значения которой изменяются не плавно, а скачками, т.е. могут принимать только некоторые заранее определённые значения. Например, денежный выигрыш в какой-нибудь лотерее, или количество очков при бросании игральной кости, или число появления события при нескольких испытаниях. Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счётным множеством)
Для сравнения - непрерывная случайная величина может принимать любые значения из некоторого числового промежутка: например, температура воздуха в определённый день, вес ребёнка в каком-либо возрасте, и т.д.

Закон распределения дискретной случайной величины представляет собой перечень всех её возможных значений и соответствующих вероятностей. Сумма всех вероятностей Σpi = 1. Закон распределения также может быть задан аналитически (формулой) и графически (многоугольником распределения, соединяющим точки (xi; pi)

Функция распределения случайной величины - это вероятность того, что случайная величина (назовём её ξ) примет значение меньшее, чем конкретное числовое значение x:
F(X) = P(ξ < X).
Для дискретной случайной величины функция распределения вычисляется для каждого значения как сумма вероятностей, соответствующих всем предшествующим значениям случайной величины. Ниже будет приведён пример, разъясняющий смысл скароме дискретных случайных величин, возможные значения которых образуют конечную или бесконечную последовательность чисел, не заполняющих сплошь никакого интервала, часто встречаются случайные величины, возможные значения которых образуют некоторый интервал. Примером такой случайной величины может служить отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе. Такого рода, случайные величины не могут быть заданы с помощью закона распределения вероятностей р(х). Однако их можно задать с помощью функции распределения вероятностей F(х). Эта функция определяется точно так же, как и в случае дискретной случайной величины:

Так как дискретная случайная величина имеет конечное или счётное множество значений, то их можно просто перечислить и указать соответствующие вероятности. Это можно сделать, например, в форме таблицы

 

X x1 x2 ... xn ...
P p1 p2   pn  

 

где, - вероятность того, что X примет значение x .

 

Такую таблицу называют рядом распределения.


Дата добавления: 2015-07-10; просмотров: 104 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Пример 1 - решить дифференциальное уравнение| Математическое ожидание и его свойства.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)