Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Проблемы в гиперпространстве

Читайте также:
  1. I. Определение и проблемы метода
  2. I. ОПРЕДЕЛЕНИЕ И ПРОБЛЕМЫ МЕТОДА
  3. I. ПРИЧИНЫ ОБОСТРЕНИЯ КАДРОВОЙ ПРОБЛЕМЫ НА ТЕЛЕВИДЕНИИ, В СМИ РОССИИ
  4. II.НЕКОТОРЫЕ ПРОБЛЕМЫ ИЗУЧЕНИЯ ФИЛОСОФИИ ПРАКТИКИ 1 страница
  5. II.НЕКОТОРЫЕ ПРОБЛЕМЫ ИЗУЧЕНИЯ ФИЛОСОФИИ ПРАКТИКИ 2 страница
  6. II.НЕКОТОРЫЕ ПРОБЛЕМЫ ИЗУЧЕНИЯ ФИЛОСОФИИ ПРАКТИКИ 3 страница
  7. II.НЕКОТОРЫЕ ПРОБЛЕМЫ ИЗУЧЕНИЯ ФИЛОСОФИИ ПРАКТИКИ 4 страница

 

Но если дополнительные измерения и вправду существуют в природе, а не только в чистейшей математике, то ученым, занимающимся струнной теорией, придется заняться той же проблемой, что неотступно преследовала Теодора Калуцу и Феликса Клейна в 1921 году, когда они сформулировали первую теорию дополнительных измерений: где же находятся эти измерения?

Калуца, впрошломмалоизвестньгйматематик, написал Эйнштейну письмо, в котором предлагал переписать уравнения Эйнштейна применительно к пяти измерениям (одно измерение времени и четыре измерения пространства). С математической точки зрения это никакой проблемы не представляло, поскольку уравнения Эйнштейна могли быть легко переписаны для любого количества измерений. Но в письме содержалось поразительное замечание: если выделить четырехмерные части, содержащиеся в уравнениях, записанных для пяти измерений, то мы автоматически, будто по волшебству, получим теорию света Максвелла! Иными словами, если мы всего лишь добавим пятое измерение, то из уравнений Эйнштейна для гравитации получается теория электромагнитного взаимодействия Максвелла.

Хотя мы не можем видеть само пятое измерение, на его поверхности образуется рябь, которая соответствует световым волнам! Это был приятный результат, поскольку на протяжении последних 150 лет целым поколениям физиков и инженеров приходилось заучивать сложные уравнения Максвелла. Сегодня эти сложные уравнения без всяких усилий выводятся как простейшие вибрации, которые можно обнаружить в пятом измерении.

Представьте себе рыб, плавающих в мелком пруду прямо под листьями кувшинок. Они считают, что их «вселенная» двумерна. Наш трехмерный мир может находиться за пределами их знания. Но существует способ, с помощью которого они могут уловить присутствие третьего измерения. Если идет дождь, то они отчетливо видят тень волн ряби, расходящихся по поверхности пруда. Подобным образом и мы не можем видеть пятого измерения, но рябь в пятом измерении предстает перед нами как свет.

(Теория Калуцы была прекрасным и глубоким открытием, касающимся симметрии. Позднее было замечено, что если мы добавим еще больше измерений к прежней теории Эйнштейна и заставим их вибрировать, то тогда эти вибрации дополнительных измерений будут представлять W- и Z-бозоны и глюоны, обнаруженные в сильном и слабом ядерном взаимодействии! Если путь, предложенный Калуцой, был верным, то Вселенная была явно намного проще, чем изначально предполагали ученые. Просто, вибрируя все «выше», измерения представляли многие взаимодействия, правящие миром.)

Хотя Эйнштейна потряс этот результат, он был слишком хорош, чтобы быть правдой. Спустя годы были обнаружены проблемы, которые сделали идею Калуцы бесполезной. Во-первых, его теория была усеяна противоречиями и аномалиями, что весьма типично для теорий квантовой гравитации. Во-вторых, тревожил гораздо более важный физический вопрос: почему же мы не видим пятого измерения? Когда мы пускаем стрелы в небо, мы не видим, чтобы они исчезали в другом измерении. Возьмем дым, который медленно проникает во все области пространства. Поскольку никогда не было замечено, чтобы дым исчезал в высшем измерении, физики поняли, что дополнительные измерения, если они вообще существуют, должны быть меньше атома. За последнее столетие идеей о дополнительных измерениях развлекались мистики и математики; что же касается фи-

зиков, то они с пренебрежением относились к этой идее, поскольку никто и никогда не видел, чтобы предметы пропадали в пятом измерении.

Для спасения теории физикам пришлось предположить, что эти дополнительные измерения настолько малы, что их нельзя наблюдать в природе. Поскольку наш мир четырехмерен, это предполагало, что пятое измерение должно быть свернуто в крошечный шарик размером меньше атома — слишком маленький, чтобы его можно было наблюдать в ходе эксперимента.

Струнной теории приходится сталкиваться с той же проблемой. Мы должны свернуть все эти нежелательные дополнительные измерения в крошечный шарик (этот процесс называется компактифи-кацией). Согласно струнной теории, изначально Вселенная была десятимерной, а все взаимодействия в ней были объединены струной. Однако десятимерное гиперпространство было неустойчивым, и шесть из десяти измерений начали сворачиваться в крошечный шарик, а остальные четыре расширились в Большом Взрыве. Причиной, по которой мы не видим эти другие измерения, является то, что они намного меньше атома, а потому ничто не может в них проникнуть. (Например, садовый шланг и соломинка издалека кажутся одномерными объектами, основной характеристикой которых является их длина. Но если рассмотреть их поближе, то мы обнаружим, что они, в сущности, являются двумерными поверхностями или цилиндрами, но второе измерение свернулось таким образом, что мы его не видим.)

 


Дата добавления: 2015-07-10; просмотров: 133 | Нарушение авторских прав


Читайте в этой же книге: Многие миры | Вещество из информации | Квантовые компьютеры и телепортация | Квантовая телепортация | Волновая функция Вселенной | М-теория: мать всех струн | М-теория | История струнной теории | Десять измерений | Струнная теория выходит в свет |
<== предыдущая страница | следующая страница ==>
Космическая музыка| Почему струны?

mybiblioteka.su - 2015-2024 год. (0.005 сек.)