Читайте также:
|
|
1) Функция f (x) называется непрерывной в точке x 0, если она в этой точке имеет предел, равный значению функции в этой точке, т.е. если
.
2) Функция f (x) непрерывна в точке x 0, если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, т.е. .
Определение непрерывной функции на множестве. Функция f (x)называется непрерывной на множестве Е, если она непрерывна в каждой точке этого множества.
Определение разрывной функции и точки разрыва. Если функция f (x) не является непрерывной в точке x 0, (т.е. если не выполняется условие ), то она называется разрывной в точке x 0, а точка x 0 называется точкой разрыва функции f (x).
Определение точки разрыва первого рода. Точка x 0 разрыва функции f (x) называется точкой разрыва I рода, если в этой точке существуют конечные односторонние пределы f (x 0-0), f (x 0+0).
Величина называется скачком функции в точке x 0.
Определение точки устранимого разрыва. Точка x 0 разрыва функции f (x) называется точкой устранимого разрыва, если , т.е. (но либо , либо ).
Определение точки разрыва второго рода. Точка x 0 разрыва функции f (x) называется точкой разрыва II рода, если в точке x 0 не существует или равен бесконечности хотя бы один из односторонних пределов.
Определение равномерно непрерывной функции. f (x) называется равномерно непрерывной на промежутке (a; b), если
.
Дата добавления: 2015-07-10; просмотров: 132 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Второй замечательный предел. | | | Функции и задачи финансового учета |