Читайте также: |
|
1. | ![]() | Закон коммутативности (переместительный) При операциях логического сложения и логического умножения логические переменные можно менять местами. |
2. | ![]() | Закон ассоциативности (сочетательный) Если используются ТОЛЬКО операции логического сложения или ТОЛЬКО логического умножения, то можно пренебречь скобками или расставить их произвольно. |
3. | ![]() | Закон дистрибутивности (распределительный) За скобки можно выносить как общие сомножители, так и общие слагаемые. |
4. | ![]() ![]() ![]() | Законы де Моргана (законы общей инверсии)
Отрицание ![]() ![]() |
5. | ![]() | Правило исключения импликации |
6. | ![]() | Закон двойного отрицания Отрицать отрицание какого-нибудь высказывания - то же, что утверждать это высказывание |
7. | ![]() ![]() ![]() ![]() | Законы исключения констант Ложь не влияет на значение логического выражения при сложении, а истина - при умножении. |
8. | ![]() | Закон непротиворечия (противоречия) Никакое высказывание не может быть истинно одновременно со своим отрицанием. |
9. | ![]() | Закон исключения третьего Любое высказывание либо истинно, либо ложно. |
10. | ![]() | Законы идемпотентности (исключения степеней и коэффициентов) В алгебре логики нет показателей степеней и коэффициентов. |
11. | ![]() | Законы поглощения
Для формул вида ![]() |
12. | ![]() | Законы склеивания
Для формул вида ![]() |
13. | ![]() | Закон контрапозиции (перевертывания) |
14. | ![]() | Правило исключения эквивалентности |
1. Упростите логические выражения:
1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.
2. Упростите логические формулы. При записи решения указывайте номер или название закона, который применяете. Проверьте правильность преобразований с помощью таблиц истинности.
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
3. Упростите выражения, используя минимум законов логических операций:
2.1.
2.2.
При записи решения указывайте номер или название закона, который применяете. Проверьте правильность преобразований с помощью таблиц истинности.
4. Упростите выражение и покажите, что оно тождественно ложное
5. Упростите выражение и покажите, что оно тождественно истинное
6. Заданы логические функции. Необходимо упростить эти функции и проверить, являются ли они тождественными.
При записи решения указывайте номер или название закона, который применяете. Проверьте правильность преобразований с помощью таблиц истинности.
7. Упростите . При записи решения указывайте номер закона, который применяете.
8. Запишите нормальную форму функции F:
При записи решения указывайте номер или название закона, который применяете. Проверьте правильность преобразований с помощью таблиц истинности.
9.
Упростите логическое выражение и определите его истинность:
При записи решения указывайте номер или название закона, который применяете. Проверьте правильность преобразований с помощью таблиц истинности.
10. Определите значение формул:
При записи решения указывайте номер или название закона, который применяете. Проверьте правильность преобразований с помощью таблиц истинности.
11. Упростите следующую логическую формулу:
При записи решения указывайте номер или название закона, который применяете. Проверьте правильность преобразований с помощью таблиц истинности.
12. Даны логические схемы. Построить логическое выражение, соответствующее каждой схеме. Упростить каждое полученное выражение и построить для него новую логическую схему. При записи решения указывайте номер или название закона, который применяете. Проверьте правильность преобразований с помощью таблиц истинности. | а ![]() |
б ![]() | ![]() |
13.Упростите логические функции. При записи решения указывайте номер или название закона, который применяете. Проверьте правильность преобразований с помощью таблиц истинности.
13.1.
13.2.
13.3.
13.4.
13.5.
13.6.
13.7.
13.8.
13.9.
13.10.
13.11.
13.12.
13.13.
Тема «Решение логических задач с помощью логических операций»
Решить логическую задачу значит:
1. Формализовать ее, т.е. записать на языке алгебры логики:
§ определить простые высказывания;
§ записать сложные высказывания, выражающие отдельные известные факты;
§ записать произведение сложных высказываний;
2. Упростить полученное логическое выражение;
3. Проанализировать результат (либо непосредственно по упрощенному выражению, либо по таблице истинности упрощенного выражения).
Дата добавления: 2015-07-08; просмотров: 201 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
I to sleep recently. | | | Решите следующие задачи с помощью алгебры логики. |