Читайте также:
|
|
Цель лабораторной работы: получить навыки программирования задач с использованием нескольких функций.
Задания к лабораторной работе № 6
1. Даны действительные числа s, t. Вычислить f (t, -2 s, 1.17) + f (2.2, t, s - t), где .
2. Даны действительные числа s, t. Вычислить g (1.2, s) + g (t, s) - g (2 s -1, st), где .
3. Даны действительные числа a, b, c. Вычислить .
4. Даны действительные числа a, b, c. Вычислить .
5. Даны натуральные числа n, m, целые числа a 1, …, an, b 1, …, bm, c 1, …, c 30. Вычислить .
6. Даны действительные числа a 1, …, an, b 1, …, bm. В последовательности a 1, …, an и в последовательности b 1, …, bm все члены, следующие за членом с наибольшим значением (за первым по порядку, если их несколько), заменить на 0.5.
7. Даны действительные числа x 1, y 1, x 2, y 2, …, x 7, y 7. Найти периметр семиугольника, вершины которого имеют соответственно координаты (x 1, y 1), (x 2, y 2), …, (x 7, y 7).
8. Даны три массива А (3,6), В (5,5), С (5,4). Найти максимальное произведение четных элементов, расположенных в нечетных строках этих массивов.
9. Даны два массива А (10), В (10). В массивах А (10) и В (10) все элементы, предшествующие первому нулевому элементу, заменить на 0,5.
10. Даны три массива А (5,5), В (5,5), С (5,5). Найти минимальное произведение ненулевых элементов, расположенных в нечетных строках этих массивов.
11. Даны пять массивов А (4,4), В (4,4), С (4,4), D (4,4), F (4,4). Найти произведение и сумму массивов. Определение произведения и суммы двух массивов оформить в виде процедуры.
12. Даны четыре массива A (5,5), B (5,5), C (5,5), D (5,5). Найти произведение минимальных элементов, расположенных выше побочной диагонали в этих массивах.
13. Даны действительные числа a, b, c, d. Найти площадь пятиугольника, изображенного на рисунке. (Определить процедуру вычисления площади треугольника по трем его сторонам).
14. Найти семиугольник с координатами вершин (x 1, y 1), (x 2, y 2), …, (x 7, y 7). Вывести на печать координаты треугольника с максимальной площадью. Определение площади треугольника по формуле Герона оформить в виде функции.
15. Даны целые числа a 1, …, an, b 1, …, bm, k. Если в последовательности a 1, …, an нет ни одного члена со значением k, то первый по порядку член этой последовательности, не меньший всех остальных членов, заменить на значение k. По такому же правилу преобразовать последовательность b 1, …, bm применительно к значению 10.
16. Даны действительные числа a, b. Получить
.
17. Даны натуральные числа k, l, m, действительные числа x 1, …, xk, y 1, …, yl, z 1, …, zm. Получить
18. Даны действительные числа s, t. Получить ,
где .
19. Даны действительные числа a 1, …, a 6. Получить для x = 1, 3, 4 значения p (x +1)- p (x), где
20. Дано действительное число y. Получить где
21. Даны действительные числа s, t, Получить
где
22. Даны целые числа . Вычислить по схеме Горнера , определив процедуры полного сокращения рационального числа, заданного числителем и знаменателем, а также процедуры сложения и умножения рациональных чисел.
23. Даны целые числа Исследовать существование целочисленных корней уравнения .(Если , то имеется корень 0; если же , то целочисленный корень, если он существует, принадлежит конечному множеству положительных и отрицательных делителей числа . Здесь полезно определить процедуру вычисления по схеме Горнера значения многочлена, а также процедуру, которая по двум заданным числам k и m позволяет определить значение наименьшего делителя числа m, содержащегося среди чисел k+1, k+2,...,m.
24. Даны натуральное число n, действительные числа x, y,
Вычислить по схеме Горнера значение многочлена с комплексными коэффициентами (Определить процедуры выполнения арифметических операций над комплексными числами).
25. Даны действительные числа Получить где u, v, w – комплексные числа (Определить процедуры вычисления арифметических операций над комплексными числами.)
26. Даны натуральное число n, целые числа Рассмотреть отрезки последовательности (подпоследовательности идущих подряд членов), состоящие из
а) полных квадратов; б) степеней пятерки; в) простых чисел.
В каждом случае получить наибольшую из длин рассматриваемых отрезков. (Определить процедуры, позволяющие распознавать полные квадраты, степени пятерки, простые числа.)
27. Дано натуральное число n. Среди чисел 1,2,...,n найти все те, которые можно представить в виде суммы квадратов двух натуральных чисел. (Определить процедуры, позволяющие распознавать полные квадраты).
28. Даны действительные числа Найти периметр десятиугольника, вершины которого имеют соответственно координаты (Определить процедуру вычисления расстояния между двумя точками, заданными своими координатами).
29. Даны натуральное число n, действительные числа . Найти площадь n -угольника, вершины которого при некотором последовательном обходе имеют координаты . (Определить процедуру вычисления площади треугольника по координатам его вершин.)
30. Дано четное число n > 2; проверить для этого числа гипотезу Гольдбаха. Эта гипотеза (по сегодняшний день не опровергнутая и полностью не доказанная) заключается в том, что каждое четное n, больше двух, представляется в виде суммы двух простых чисел. (Определить процедуру, позволяющую распознавать простые числа).
31. Дано натуральное число n. Выяснить, имеются ли среди чисел близнецы, т.е. простые числа, разность между которыми равна двум. (Определить процедуру, позволяющую распознавать простые числа).
32. Даны натуральные число n, целые числа . Рассмотреть все отрезки последовательности , состоящие из совершенных чисел. (Определить процедуру, позволяющую распознавать совершенные числа).
Лабораторная работа № 7. Использование указателей при работе с одномерными и двумерными массивами.
Цель лабораторной работы: получить навыки использования указателей при работе с одномерными и двумерными массивами.
Дата добавления: 2015-11-04; просмотров: 329 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Лабораторная работа №5. Разработка программ с использованием двумерных массивов. | | | Задания к лабораторной работе № 7. |