Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Погрешности измерений, виды погрешностей, понятие о классе точности прибора, поверка приборов прямым и обратным ходом. Вариация показаний прибора.

Издательство Екатеринбургский экономико-технологический колледж 2013г. | Виды и методы измерений | Нормируемые метрологические характеристики (ГОСТ 8.009-84). | Методы контроля в гибких производственных система | ОПИСАНИЕ ЛАБОРАТОРНОГО СТЕНДА | ПОРЯДОК И МЕТОДИКА ПРОВЕДЕНИЯ РАБОТЫ | Протокол испытаний напоромера | Типовые структуры измерительных систем. | Компонент 10, осуществляющий визуальное и документальное отображение накопления цифровых данных. | Измерение электрических величин. |


Читайте также:
  1. C. Л. Франк Понятие философии. Взаимоотношения философии и науки
  2. Ассортимент товаров. Понятие. Классификация ассортимента.
  3. Ассортимент товаров. Понятие. Классификация ассортимента.
  4. БИОЛОГИЧЕСКОЕ ПОНЯТИЕ СВОБОДЫ В ПЕДАГОГИКЕ
  5. В 1 классе 132 ч (4 ч в неделю, 33 учебных недели).
  6. В Европе есть такое понятие — «интеллектуал». В Италии — Умберто Эко, в Германии — Гюнтер Грасс. Они — кровные братья наших интеллигентов?
  7. Введение. Понятие эмпириокритицизма. Исторические и философские предпосылки эмпириокритицизма

 

Определение погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

 

Классификация погрешностей.

По форме представления:

Абсолютная погрешность является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины . Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если — измеренное значение, а — истинное значение, то неравенство должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Существует несколько способов записи величины вместе с её абсолютной погрешностью.

Относительная погрешность — погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины (РМГ 29-99): , .

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле , где — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

По причине возникновения:

В технике применяют приборы для измерения лишь с определённой заранее заданной точностью — основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает допол-

 

нительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т. п.

Обобщённой характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений.

Классы точности средств измерений.

Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. Классы точности регламентируются стандартами на отдельные виды средств измерения с использованием метрологических характеристик и способов их нормирования, изложенных в предыдущих главах.

Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измерений, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность.

Для остальных средств измерений обозначение классов точности вводится в зависимости от способов задания пределов допускаемой основной погрешности.

Пределы допускаемой абсолютной основной погрешности могут задаваться либо в виде одночленной формулы:

,

либо в виде двухчленной формулы:

,

где и выражаются одновременно либо в единицах измеряемой величины, либо в делениях шкалы измерительного прибора.

Более предпочтительным является задание пределов допускаемых погрешностей в форме приведенной или относительной погрешности.

Пределы допускаемой приведенной основной погрешности нормируются в виде одночленной формулы:

,

где число (n = 1, 0, ---1, -2…).

Пределы допускаемой относительной основной погрешности могут нормироваться либо одночленной формулой:

,

либо двухчленной формулой:

,

где – конечное значение диапазона измерений или диапазона значений воспроизводимой многозначной мерой величины, а постоянные числа q, с и d выбираются из того же ряда, что и число р.

В обоснованных случаях пределы допускаемой абсолютной или относительной погрешности можно нормировать по более сложным формулам или даже в форме графиков или таблиц.

Средствам измерений, пределы допускаемой основной погрешности которых задаются относительной погрешностью и присваивают классы точности, выбираемые из ряда чиселр и равные соответствующим пределам в процентах. Так для средства измерений с класс точности обозначается .

Если пределы допускаемой основной относительной погрешности выражаются двухчленной формулой (94), то класс точности обозначается какc/d, где числа с и d выбираются из того же ряда, что и р, но записываются в процентах. Так, из мерительный прибор класса точности характеризуется пределами допускаемой основной относительной погрешности:

.

Классы точности средств измерений, для которых пределы допускаемой основной, обозначаются одной цифрой, выбираемой из ряда для чиселр и выраженной в процентах. Если, например, , то класс точности обозначается как 0.5 (без кружка).

Классы точности обозначаются римскими цифрами или буквами латинского алфавита для средств измерений, пределы допускаемой погрешности которых задаются в форме графиков, таблиц или сложных функций входной, измеряемой или воспроизводимой величины. К буквам при этом допускается присоединять индексы в виде арабской цифры. Чем меньше пределы допускаемой погрешности, тем ближе к началу алфавита должна быть буква и тем меньше цифра. Недостатком такого обозначения класса точности является его чисто условный характер.

Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведённых основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где показатель степени n = 1; 0; −1; −2 и т. д.


Дата добавления: 2015-11-03; просмотров: 304 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Типовые структуры измерительных устройств| По характеру проявления

mybiblioteka.su - 2015-2024 год. (0.008 сек.)