Читайте также:
|
|
В России с разной степенью готовности реализуются проекты программы «Экологически чистая энергетика», которые в той или иной мере базируются на названных выше перспективных технологиях.
Так для использования канско-ачинских углей в СибВТИ подготовлен проект ГРЭС мощностью 6,4 ГВт с восьмью паротурбинными энергоблоками по 800 МВт с котлоагрегатами уменьшенных габаритов, рассчитанными на трехступенчатое сжигание пыли с предварительной подсушкой топлива и термической подготовкой угольной пыли, с установкой тканевых фильтров.
Рис. 6.5. Технологическая схема экологически чистого паротурбинногоблока 800 МВт на канско-ачинских углях: 1 – бункер сырого угля;2 – газовая сушилка; 3 – питатель; 4 – мельница; 5 – пылеконцентратор; б – пыле-газоподогреватель; 7 – котел; 8 – горелка; 9 – воздухоподогреватель; 10 – тканевыйфильтр; 11 – дымосос; 12 – золоконцентратор
СибВТИ совместно с ОАО «Сибэнергомаш» выполнен рабочий проект котельной установки Е-500-13,8-560 ВТ для энергоблока № 2 Минусинской ТЭЦ, на которой в условиях эксплуатации будут проверены основные технические решения, заложенные в проект экологически чистой ГРЭС на березовских углях (Березовская ГРЭС) с модернизированными котлами П-67.
Рис. 6.6. Схема системы пылеприготовления с установкой высокотемпературного подогрева пыли (котел П-67): 1 - бункер сырого угля; 2 – питатель сырого угля; 3 – мельница-вентилятор MB 3400; 4 – пылеконцентратор; 5 – пылеподогреватель; б – муфельная горелка; 7 – циклон; 8 – топка; I – топливо; II – аэросмесь (концентрированный поток); III – аэросмесь (слабозапыленный поток); IV – горячий воздух; V – дымовые газы
Принцип работы схемы системы подготовки к сжиганию угля применительно к котлу П-67, оборудованному пылесистемой прямого вдувания с газовой сушкой и размолом угля в мельницах-вентиляторах (рис. 6.6) заключается в следующем: сырой уголь на бункере подается питателем в газозаборную шахту, где подсушивается топочными газами с температурой 590–645 °С. Далее топливо движется в мельницу-вентилятор для дальнейшей сушки и размола, затем через сепаратор аэросмесь поступает в пылеконцентратор (ПК), где происходит разделение потока на концентрированный и слабозапыленный потоки.
Сбросный слабозапыленный поток с параметрами (gcбp=0,2) разделяется на четыре яруса горелок и подается в топку котла. Распределение сбросного потока по ярусам горелок в предлагаемой конструкции ПК осуществляется, как в центробежном пыледелителе; разница заключается лишь в том, что большая доля пыли отбирается в основной поток. Часть основного потока (gосн=0,8) направляется в циклон (gц=0,141), отделившаяся в циклоне угольная пыль поступает в муфельную горелку, где, смешиваясь с горячим воздухом, воспламеняется от электрозапального устройства, а обеспыленные газы сбрасываются в газозаборную шахту. Тепло, выделившееся при сгорании пыли в муфеле, используется для термической обработки основного потока, поступающего в пылеподогреватель (gпп=0,659), который выполнен в виде экранированного канала, примыкающего к топке котла. Температура подогрева пылевзвеси на выходе из подогревателя регулируется изменением расхода горячего воздуха.
Дата добавления: 2015-10-28; просмотров: 55 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Разработки ЭНИНа | | | Термическая подготовка углей с помощью плазменного газификатора |