Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Тема 12.5. Доказательства в логике предикатов

Тема 9.4. Теоремы о функциональной полноте | Раздел 10. Хорновские формулы | Тема 10.1. Задача получения продукции | Тема 10.2. Решение задачи о продукции | Раздел 11. Теория релейно-контактных схем | Тема 11.4. Двоичный сумматор | Тема 11.5. Методы упрощения логических выражений. Методы решения логических задач | Тема 12.1. Определение предиката | Тема 12.2. Логические операции над предикатами | Тема 12.3. Кванторы |


Читайте также:
  1. Библейские доказательства существования духовного мира.
  2. ДОКАЗАТЕЛЬСТВА
  3. ДОКАЗАТЕЛЬСТВА ДРУЖБЫ
  4. Доказательства эволюции. Микроэволюция. Макроэволюция
  5. Доказывание и доказательства в делах об административных правонарушениях
  6. Естественные доказательства
  7. КОНТРПОЛОЖЕНИЕ АНТИНОРМАНИСТОВ И ДОКАЗАТЕЛЬСТВА

Метод доказательства формул, содержащих переменные, путём непосредственной подстановки в них констант называется методом интерпретаций или методом моделей. Подстановка констант позволяет интерпретировать формулу как осмысленное утверждение об элементах конкретного множества. Поэтому такой метод, выясняющий истинность формулы путём обращения к её возможному смыслу называется семантическим (смысловым). Метод интерпретаций удобен для доказательства выполнимости формул или их неэквивалентности, поскольку и в том, и в другом случае достаточно найти одну подходящую подстановку. Он удобен также для исследования истинности формул на конечных областях. Дело в том, что если область конечна, то кванторы переходят в конечные формулы логики высказываний:

, .

Заменяя все кванторы по этим соотношениям, любую формулу логики предикатов можно перевести в формулу, состоящую из предикатов, соединённых логическими операциями. Истинность такой формулы на конечной области проверятся конечным числом подстановок и вычислений. Методы рассуждений, использующие только конечные множества конечных объектов, называются финитными.

Для бесконечных же областей, в общем случае, при доказательстве тождественной истинности формул метод интерпретации связан с большими трудностями. Поэтому для построения множества истинных формул в логике предикатов выбирается иной путь. Это множество порождается из неких исходных формул (аксиом) с помощью формальных процедур - правил вывода. Используются лишь формальные (а не содержательные), внешние свойства последовательности символов, образующих формулы, причём эти свойства полностью описываются правилами вывода. Множества, порождённые таким формальным методом, называются формальными.


Дата добавления: 2015-10-28; просмотров: 67 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Тема 12.4. Истинные формулы и эквивалентные соотношения| Тема 13.1. Основные определения теории графов

mybiblioteka.su - 2015-2024 год. (0.005 сек.)