Читайте также:
|
|
В этом методе за неизвестные принимают потенциалы узлов схемы, а токи ветвей находят по закону Ома.
Рассмотрим правила формирования уравнений на примере схемы, приведенной на рис. 1.4, в которой известны величины ЭДС и ток источника тока, а также все сопротивления.
Рисунок 1.4
В этой схеме два неизвестных потенциала: и , поскольку = , = , = , а потенциал одного из узлов, в данном случае , принимается равным нулю, что на схеме обозначается заземлением узла 3.
Запишем уравнения по первому закону Кирхгофа, предварительно выбрав направления токов в ветвях:
узел 1: -I1 + I3 + I4 + I5 –I7 = 0
узел 2: I2 – I3 – I4 + I6 + I7 = 0 (*)
Выразим токи ветвей через потенциалы узлов:
;
;
;
;
; ;
и подставим в систему (*):
После группировки получим:
В общем виде:
где , - собственные (узловые) проводимости узлов 1 и 2, каждая из которых равна сумме проводимостей ветвей, сходящихся в данном узле;
, - общая проводимость - взятая со знаком “минус” сумма проводимостей ветвей, соединяющих узлы 1 и 2 (проводимость ветви, содержащей источник тока, равна нулю);
, - задающие (узловые) токи узлов 1 и 2, каждый из которых равен алгебраической сумме произведений ЭДС на проводимость ветвей, в которых они находятся (рассматриваются ветви, подключенные к данному узлу), и алгебраической сумме токов источников тока, подключенных к данному узлу. Знаки слагаемых: “плюс” - если направление ЭДС (источника тока) к узлу, “минус” - если направление ЭДС (источника тока) от узла.
Последовательность определения токов ветвей методом узловых потенциалов:
1) Записывается система уравнений в общем виде. Число уравнений системы на единицу меньше числа узлов схемы. Если в схеме содержится ветвь с источником ЭДС без сопротивлений, то j2 = j1 + E1. Приняв j1 = 0, получим j2 = E1.
2) Определяются коэффициенты при неизвестных - собственные и общие проводимости, также задающие токи узлов.
3) Рассчитывается потенциалы узлов.
4) Выбираются направления токов ветвей.
5) Определяются токи ветвей.
Дата добавления: 2015-10-24; просмотров: 31 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Метод контурных токов | | | Метод эквивалентного генератора |