Читайте также: |
|
Конечной целью выборочного наблюдения является характеристика генеральной совокупности на основе выборочных результатов.
Выборочные средние и относительные величины распространяют на генеральную совокупность с учетом предела их возможной ошибки.
В каждой конкретной выборке расхождение между выборочной средней и генеральной, т.е. может быть меньше средней ошибки выборки μ, равно ей или больше ее.
Причем каждое из этих расхождений имеет различную вероятность (объективную возможность появления события). Поэтому фактические расхождения между выборочной средней и генеральной можно рассматривать как некую предельную ошибку, связанную со средней ошибкой и гарантируемую с определенной вероятностью Р.
Предельную ошибку выборки для средней при повторном отборе можно рассчитать по формуле:
где t – нормированное отклонение – «коэффициент доверия», зависящий от вероятности, с которой гарантируется предельная ошибка выборки;
– средняя ошибка выборки.
Аналогичным образом может быть записана формула предельной ошибки выборки для доли (∆w) при повторном отборе:
При случайном бесповторном отборе в формулах расчета предельных ошибок выборки (6.20) и (6.21) необходимо умножить подкоренное выражение на 1 – (n / N).
Формула предельной ошибки выборки вытекает из основных положений теории выборочного метода, сформулированных в ряде теорем теории вероятностей, отражающих закон больших чисел.
На основании теоремы П.Л. Чебышева (с уточнениями A.M. Ляпунова) с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки и ограниченной генеральной дисперсии выборочные обобщающие показатели (средняя, доля) будут сколь угодно мало отличаться от соответствующих генеральных показателей.
Применительно к нахождению среднего значения признака эта теорема может быть записана так:
Таким образом, величина предельной ошибки выборки может быть установлена с определенной вероятностью.
Значения функции Ф(t) при различных значениях t как коэффициента кратности средней ошибки выборки определяются на основе специально составленных таблиц. Приведем некоторые значения (Представленными значениями Ф(t) воспользуемся при решении задач.), применяемые наиболее часто для выборок достаточно большого объема (n > 30):
t | 1,000 | 1,960 | 2,000 | 2,580 | 3,000 |
Ф(t) | 0,683 | 0,950 | 0,954 | 0,990 | 0,997 |
Предельная ошибка выборки отвечает на вопрос о точности выборки с определенной вероятностью, значение которой определяется коэффициентом t (в практических расчетах, как правило, заданная вероятность не должна быть менее 0,95). Так, при t = 1 предельная ошибка составит ∆ = μ. Следовательно, с вероятностью 0,683 можно утверждать, что разность между выборочными и генеральными показателями не превысит одной средней ошибки выборки. Другими словами, в 68,3% случаев ошибка репрезентативности не выйдет за пределы ±μ. При t = 2 с вероятностью 0,954 она не выйдет за пределы ±2μ, при t = 3 свероятностью 0,997 – за пределы ±3μ и т.д.
Как видно из приведенных выше значений функции Ф(7) (см. последнее значение), вероятность появления ошибки, равной или большей утроенной средней ошибки выборки, т.е. ∆ ≥ 3μ, крайне мала и равна 0,003, т.е. 1 – 0,997. Такие маловероятные события считаются практически невозможными, а потому величину ∆ = 3μ можно принять за предел возможной ошибки выборки.
Выборочное наблюдение проводится в целях распространения выводов, полученных по данным выборки, на генеральную совокупность. Одной из основных задач является оценка по данным выборки исследуемых характеристик (параметров) генеральной совокупности.
Предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:
Рассмотрим нахождение средних и предельных ошибок выборки, определение доверительных пределов средней и доли на конкретных примерах.
Задача 1. Для определения скорости расчетов с кредиторами предприятий корпорации в коммерческом банке была проведена случайная выборка 100 платежных документов, по которым средний срок перечисления и получения денег оказался равным 22 дням со стандартным отклонением 6 дней (S = 6).
Необходимо с вероятностью Р = 0,954 определить предельную ошибку выборочной средней и доверительные пределы средней продолжительности расчетов предприятий данной корпорации.
Решение. Предельную ошибку ∆ = t μ определяем по формуле повторного отбора (6.20), так как численность генеральной совокупности N неизвестна. Из представленных значений Ф(t) (см. с. 99) для вероятности Р = 0,954 находим t = 2.
Следовательно, предельная ошибка выборки:
Таким образом, с вероятностью 0,954 можно утверждать, что средняя продолжительность расчетов предприятий данной корпорации колеблется в пределах от 20,8 до 23,2 дней.
Задача 2. Среди выборочно обследованных 1000 семей региона по уровню душевого дохода (выборка 2%-ная, механическая) малообеспеченных оказалось 300 семей.
Требуется с вероятностью 0,997 определить долю малообеспеченных семей во всем регионе.
Решение. Выборочная доля (доля малообеспеченных семей среди обследованных семей) равна:
По представленным ранее данным Ф(t) для вероятности 0,997 находим t = 3 (см. с. 99). Предельную ошибку доли определяем по формуле бесповторного отбора (механическая выборка всегда является бесповторной):
Таким образом, почти достоверно, с вероятностью 0,997 можно утверждать, что доля малообеспеченных семей среди всех семей региона колеблется от 28,6 до 31,4%.
Задача 3. Для определения урожайности зерновых культур проведено выборочное обследование 100 хозяйств региона различных форм собственности, в результате которого получены сводные данные (табл. 6.1). Необходимо с вероятностью 0,954 определить предельную ошибку выборочной средней и доверительные пределы средней урожайности зерновых культур по всем хозяйствам региона.
Определение необходимого объема выборки. При проектировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки очень важно правильно определить численность (объем) выборочной совокупности, которая с определенной вероятностью обеспечит заданную точность результатов наблюдения. Формулы для определения необходимой численности выборки n легко получить непосредственно из формул ошибок выборки.
Так, из формул предельной ошибки выборки для повторного отбора нетрудно (предварительно возведя в квадрат обе части равенства) выразить необходимую численность выборки:
• для средней количественного признака
• для доли (альтернативного признака)
Аналогично из формул предельной ошибки выборки для бесповторного отбора находим, что
Эти формулы показывают, что с увеличением предполагаемой ошибки выборки значительно уменьшается необходимый объем выборки.
Для расчета объема выборки нужно знать дисперсию. Она может быть заимствована из проводимых ранее обследований данной или аналогичной совокупности, а если таковых нет, тогда для определения дисперсии надо провести специальное выборочное обследование небольшого объема.
Задача 4. Для определения среднего возраста 1200 студентов факультета необходимо провести выборочное обследование методом случайного бесповторного отбора. Предварительно установлено, что среднее квадратическое отклонение возраста студентов равно 10 годам.
Сколько студентов нужно обследовать, чтобы с вероятностью 0,954 средняя ошибка выборки не превышала 3 года?
Решение. Рассчитаем необходимую численность выборки по формуле бесповторного отбора (6.31), учитывая, что t = 2 при Р = 0,954:
Таким образом, выборка численностью 43 чел. обеспечивает заданную точность при бесповторном отборе.
Выборочный метод широко используется в статистической практике для получения экономической информации.
Большую актуальность приобретает выборочный метод в современных условиях перехода к рыночной экономике. Изменения в характере экономических отношений, аренда, собственность отдельных коллективов и лиц обусловливают изменения функций учета и статистики, сокращение и упрощение отчетности. Вместе с тем возрастающие требования к менеджменту усиливают потребность в обеспечении надежной информацией, дальнейшего повышения ее оперативности. Все это обусловливает более широкое применение выборочного метода в экономике.
В отечественной статистике уже накоплен определенный опыт выборочных обследований. В последние годы все большее применение в социальной статистике находят специальные выборочные наблюдения. Так, важнейшим источником информации об уровне жизни народа являются данные регулярно проводимых выборочных обследований бюджетов семей. Широко применяется выборочный метод при переписи населения, изучении общественного мнения, контрольных обходах и проверках после проведения сплошных обследований.
Потребность в использовании выборочного метода, выработке вероятностных суждений в современной отечественной статистике непрерывно расширяется.
Контрольные вопросы
1. Какое наблюдение называется выборочным?
2. В чем преимущества выборочного наблюдения перед сплошным?
3. Какие вопросы необходимо решить для проведения выборочного наблюдения?
4. Почему при выборочном наблюдении неизбежны ошибки и как они классифицируются?
5. Каковы условия правильного отбора единиц совокупности при выборочном наблюдении?
6. Как производятся собственно-случайный, механический, типический и серийный отборы?
7. В чем различие повторной и бесповторной выборки?
8. Что представляет собой средняя ошибка выборки (для средней и доли)?
9. По каким расчетным формулам находят средние ошибки выборки (для средней и доли) при повторном и бесповторном отборах?
10. Что характеризует предельная ошибка выборки и по каким формулам она исчисляется (для средней и доли)?
11. Что показывает коэффициент доверия?
12. В чем значение теоремы Чебышева-Ляпунова для решения задач выборочного наблюдения?
13. Какими способами осуществляется распространение результатов выборочного наблюдения на всю совокупность?
14. Зачем и как исчисляются предельные статистические ошибки выборки (для средней и доли)?
15. По каким формулам определяется необходимая численность выборки, обеспечивающая с определенной вероятностью заданную точность наблюдения?
Дата добавления: 2015-10-24; просмотров: 265 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Ошибки выборки | | | Понятие о рядах динамики |