Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Показатели вариации

Выполнение группировки по количественному признаку | Статистические ряды распределения | Абсолютные статистические величины | Относительные статистические величины | Понятие о средних величинах | Средняя арифметическая | Распределение рабочих АО по уровню оплаты труда | Средняя гармоническая | Цена и выручка от реализации по трем коммерческим магазинам | Средняя квадратическая и средняя кубическая |


Читайте также:
  1. Абсолютные показатели.
  2. Б.Основные показатели экономического эффекта инноваций. К системе показателей предъявляются
  3. Билет № 4, вопрос № 3.Требования к технологическому оборудованию. Показатели износа технологического оборудования и трубопроводов
  4. Блок 9. Дополнительные показатели
  5. Вариации на тему однотонного костюма.
  6. Глава 2. Статистические показатели
  7. Дифференциально-диагностические показатели между атеросклерозом и эндоартериозом

Вариация это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени.

Например, работники фирмы различаются по доходам, затратам времени на работу, росту, весу, любимому занятию в свободное время и т.д.

Вариация возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Таким образом, величина каждого варианта объективна.

Исследование вариации в статистике имеет большое значение, помогает познать сущность изучаемого явления. Особенно актуально оно в период формирования многоукладной экономики. Измерение вариации, выяснение ее причины, выявление влияния отдельных факторов дают важную информацию (например, о продолжительности жизни людей, доходах и расходах населения, финансовом положении предприятия и т.п.) для принятия научно обоснованных управленческих решений.

Средняя величина дает обобщающую характеристику признака изучаемой совокупности, но она не раскрывает строения совокупности, которое весьма существенно для ее познания. Средняя не показывает, как располагаются около нее варианты осредняемого признака, сосредоточены ли они вблизи средней или значительно отклоняются от нее. Средняя величина признака в двух совокупностях может быть одинаковой, но в одном случае все индивидуальные значения отличаются от нее мало, а в другом – эти отличия велики, т.е. в одном случае вариация признака мала, а в другом – велика, что имеет весьма важное значение для характеристики надежности средней величины.

Чем больше варианты отдельных единиц совокупности различаются между собой, тем больше они отличаются от своей средней, и, наоборот, чем меньше варианты отличаются друг от друга, тем меньше они отличаются от средней, которая в таком случае будет более реально представлять всю совокупность. Вот почему ограничиваться вычислением одной средней в ряде случаев нельзя. Нужны и другие показатели, характеризующие отклонения отдельных значений от общей средней.

Это можно показать на таком примере. Предположим, что одинаковую работу выполняют две бригады, каждая состоит из трех человек. Пусть количество деталей, изготовленных за смену отдельными рабочими, составляло:

 

 

Поэтому возникает необходимость измерять вариацию признака в совокупностях. Для этой цели в статистике применяют ряд обобщающих показателей.

– К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, коэффициент вариации.

– Самым элементарным показателем вариации признака является размах вариации R, представляющий собой разность между максимальным и минимальным значениями признака:

 

R = xmax – xmin.

 

В нашем примере размах вариации сменной выработки деталей составляет: в первой бригаде – R1 = 10 шт. (105 – 95); во второй бригаде – R2 – 50 шт. (125 – 75), что в 5 раз больше.

Это свидетельствует о том, что при численном равенстве средняя выработка первой бригады более «устойчива». Размах вариации может служить базой расчета возможных резервов роста выработки. Таких резервов больше у второй бригады, поскольку в случае достижения всеми рабочими максимальной для этой бригады выработки деталей ею может быть изготовлено 375 шт. (3 ∙ 125), а в первой – только 315 шт. (3 ∙ 105).

Однако размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду. При изучении вариации нельзя ограничиваться только определением ее размаха. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и дает обобщенную характеристику. Простейший показатель такого типа – среднее линейное отклонение.

 

 

В формулах (5.18) и (5.19) разности в числителе взяты по модулю (иначе в числителе всегда будет ноль – алгебраическая сумма отклонений вариантов от их средней арифметической). Поэтому среднее линейное отклонение как меру вариации признака применяют в статистической практике редко (только в тех случаях, когда суммирование показателей без учета знаков имеет экономический смысл). С его помощью, например, анализируется состав работающих, ритмичность производства, оборот внешней торговли.

Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных):

простая дисперсия для несгруппированных данных

 

 

взвешенная дисперсия для вариационного ряда

 

 

т.е. дисперсия равна разности средней из квадратов вариантов и квадрата их средней.

Техника вычисления дисперсии по формулам (5.20), (5.21) достаточно сложна, а при больших значениях вариантов и частот может быть громоздкой.

Расчет можно упростить, используя свойства дисперсии (доказываемые в математической статистике). Приведем два из них:

первое – если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, то дисперсия от этого не изменится;

второе – если все значения признака уменьшить или увеличить в одно и то же число раз (i раз), то дисперсия соответственно уменьшится или увеличится в i2 раз.

Используя второе свойство дисперсии, разделив все варианты на величину интервала, получим следующую формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов:

 

 

Расчет дисперсии по формуле (5.23) менее трудоемок.

Дисперсия имеет большое значение в экономическом анализе. В математической статистике важную роль для характеристики качества статистических оценок играет их дисперсия. Ниже, в частности, будет показано разложение дисперсии на соответствующие элементы, позволяющие оценить влияние различных факторов, обусловливающих вариацию признака; использование дисперсии для построения показателей тесноты корреляционной связи при оценке результатов выборочных наблюдений.

Среднее квадратическое отклонение σ равно корню квадратному из дисперсии:

 

 

Среднее квадратическое отклонение – это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, насколько в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется.

Обозначим: 1 – наличие интересующего нас признака; 0 – его отсутствие; р – доля единиц, обладающих данным признаком; q – доля единиц, не обладающих данным признаком; р + q = 1. Исчислим среднее значение альтернативного признака и его дисперсию.

Среднее значение альтернативного признака

 

 

При вычислении средних величин и дисперсии для интервальных рядов распределения истинные значения признака заменяются центральными (серединными) значениями интервалов, которые отличаются от средней арифметической значений, включенных в интервал. Это приводит к появлению систематической погрешности при расчете дисперсии. В.Ф. Шеппард установил, что погрешность в расчете дисперсии, вызванная применением сгруппированных данных, составляет 1/12 квадрата величины интервала (т.е. i2 / 12) как в сторону занижения, так и в сторону завышения величины дисперсии.

Поправка Шеппарда должна применяться, если распределение близко к нормальному, относится к признаку с непрерывным характером вариации, построено по большому количеству исходных данных (n > 500). Однако исходя из того, что в ряде случаев обе погрешности, действуя в противоположных направлениях, нейтрализуются и компенсируют друг друга, можно иногда отказаться от введения поправок.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее (количественно) совокупность и тем более типичной будет средняя величина.

В статистической практике часто возникает необходимость сравнения вариаций различных признаков. Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для подобных сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях.

Для осуществления такого рода сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим используют относительный показатель вариации – коэффициент вариации.

Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

 

 

Коэффициент вариации используют не только для сравнительной оценки вариации единиц совокупности, но и как характеристику однородности совокупности. Совокупность считается количественно однородной, если коэффициент вариации не превышает 33%.

Покажем расчет различными способами показателей вариации на примере данных о сменной выработке рабочих бригады, представленных интервальным рядом распределения (табл. 5.7).

 

 

 

Определим коэффициент вариации:

 

 

Таким образом, данная бригада рабочих достаточно однородна по выработке, поскольку вариация признака составляет лишь 8%.

Теперь выполним расчет дисперсии по формуле (5.22) и по способу моментов по формуле (5.23), для расчета воспользуемся данными табл. 5.7, графы 8-11.

Расчет дисперсии по формуле (5.20):

 

 

Как видим, наименее трудоемким является метод исчисления дисперсии способом моментов.


Дата добавления: 2015-10-24; просмотров: 69 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Структурные средние| Правило сложения дисперсий

mybiblioteka.su - 2015-2024 год. (0.013 сек.)