Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Определение глубины спуска колонны НКТ в скважину

РЕМОНТ СКВАЖИН | Подъемные сооружения и механизмы для ремонта скважин | Технология текущего ремонта скважин | Капитальный ремонт скважин | Новая технология ремонтных работ на скважинах | Ликвидация скважин | Особенности конструкций газовых скважин | Оборудование устья газовой скважины | Подземное оборудование ствола газовых скважин при добыче природного газа различного состава | Оборудование забоя газовых скважин |


Читайте также:
  1. III. Определение и характер религии Вавилона
  2. III. Определение сорбционных характеристик угля-сырца и активного угля
  3. IV.1. Уравнение политропы. Определение показателя политропы.
  4. S и D спускаются с небес
  5. V. Определение цены и объема производства в условиях монополии.
  6. Аксиоматическое определение вероятности
  7. Аналитическое определение эффективности и гидравлического сопротивления пористого фильтра

На рис. 16.13 изображена схема положения башмака (конца) колонны фонтанных труб в скважинах Ленинградского и Вуктыль-ского газоконденсатных месторождений (выше кровли пласта - рис. 16.13, б в интервале перфорации - рис. 16.13, а, в). Положение башмака колонны фонтанных труб в скважине существенно влияет на: 1) отработку продуктивных горизонтов в многопластовом неоднородном по толщине пласта месторождении; 2) высоту образующейся песчано-глинистой пробки при освоении и эксплуатации скважин; 3) высоту столба жидкости (конденсата и воды) в НКТ и затрубье; 4) очередность обводнения по высоте многопластовых месторождений; 5) сопротивление потоков газа, движущихся сверху вниз и снизу вверх к башмаку колонны НКТ; 6) коэффициенты фильтрационного сопротивления А и В.

На рис. 16.14 изображен схематичный разрез многопластового месторождения, представленного пачками коллекторов различной толщины, проницаемости и пористости. При добыче газа из пласта он будет отбираться из первой и частично из второй пачек, поскольку третья и четвертая пачки перекрыты жидкой или песчано-глинистой пробкой. В первой и второй пачках будут наблюдаться наиболее интенсивное падение давления и наиболее существенное продвижение краевой воды. В крайнем случае первая и вторая пачки могут обводниться, в то время как в нижних пачках запасы газа останутся почти начальными. Для отбора газа из третьей и четвертой пачек придется пробурить новые скважины. Очередность выработки и обводнения пачек снизу вверх в этих условиях нарушается, технико-экономические показатели добычи газа ухудшаются.

Положение башмака колонны НКТ в скважине влияет на высоту образующейся песчано-глинистой пробки при неизменном дебите газа. В качестве примера приведем эмпирическую зависимость высоты песчано-глинистой пробки h (в м) на скважинах месторождения Газли от погружения башмака колонны НКТ относительно интервала перфорации (H - b) в скважине при Q = 860 тыс. м3/сут:

, (16.15)

где l = (H - b)·100 / H, %, H - толщина пласта, м; b - расстояние от нижних отверстий интервала перфорации до башмака колонны НКТ, м.

Из зависимости (16.15) следует, что максимальная высота песчаной пробки hmax = 19,5 м при l = 0 (b = H), т. е. когда башмак колонны фонтанных труб находится в кровле пласта, и h = 0 при l = 92 % (т. е. b = 8 % от Н), когда башмак колонны НКТ на 8 % от толщины пласта не доходит до нижних отверстий перфорации.

 

Рис. 16.13. Схема башмака колонны НКТ в скважинах Ленинградского (а) и Вуктыльского (б, в) месторождений:

а - скв. 128, М = 1,3 м; скв. 34, М = 7,6 м; скв. 31, Δl = 101 м; б - скв. 3, Δl = 357 м; в - скв. 21, Δl = 332 м

 

Рис. 16.14. Схематичный разрез забоя скважины, вскрывшей неоднородный по разрезу газонасыщенный пласт:

I - IV - пачки пласта различной толщины, проницаемости и пористости; 1 - жидкостная или песчано-глинистая пробка в скважине; 2 - башмак колонны НКТ; 3, 4 - кровля и подошва пласта соответственно

 

Высоту столба жидкости в затрубном пространстве при эксплуатации скважины по колонне НКТ можно определить из соотношения

, (16.16)

где Pзт и Pз - измеряемые давления в затрубном пространстве на устье и на забое скважины соответственно; Δ - относительная плотность затрубного газа по воздуху; Z, Т - соответственно средние по глубине скважины коэффициент сверхсжимаемости затрубного газа и абсолютная температура газа; L - глубина скважины; ρж - плотность жидкости на забое скважины; h - высота столба жидкости в затрубном пространстве.

Высоту столба жидкости в колонне НКТ h1 (в м) можно определить по уравнению Ю. П. Коротаева

, (16.17)

где Q - расход газа в рабочих условиях (P3, T3), м3/с; K1 - экспериментальный коэффициент, К1 = 0,5 м/с; D - внутренний диаметр НКТ, м; L - длина колонны НКТ, м.

Погружение башмака колонны НКТ в скважине можно определить из условия равенства скоростей потоков газа, движущихся вниз по затрубному пространству и вверх по обсадной колонне (vв = vн).

Полагая известными дебит газа, приходящийся на единицу длины интервала перфорации в верхней и нижней частях пласта qв и qн, длины верхнего lв и нижнего (H - lв) интервалов, получим

,

где

.

Положение башмака колонны НКТ должно быть таким, чтобы скорости потоков газа, движущихся вниз по затрубному пространству и вверх в колонне обсадных труб, были равны у башмака колонны НКТ (vв = vн), чтобы скорость газа на входе в колонну НКТ была больше минимально необходимой для выноса твердых частиц и жидких капель критического диаметра (vнкт > vmin), чтобы высота столба жидкой или песчано-глинистой пробки в колонне обсадных труб была минимальной (hж -» 0).


Дата добавления: 2015-09-05; просмотров: 89 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Определение внутреннего диаметра колонны НКТ| Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин

mybiblioteka.su - 2015-2024 год. (0.007 сек.)