Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

V Пример. Приведённый выше пример имеет большую посылку в качестве исходного суждения «Все

V Пример | V Пример | V Пример | V Пример | Логический квадрат. Умозаключения по логическому квадрату | V Пример | V Пример | V Пример | V Пример | V Пример |


Читайте также:
  1. B16. Готовы ли Вы петь бесплатно в церковном хоре (например, если у храма нет денег, чтобы заплатить)?
  2. II. Пример разработки упаковки для парфюмерных изделий
  3. MB: Как Вы думаете, нужно ли женщине жертвовать своим до­стоинством ради того, чтобы со­хранить полную семью? К примеру, терпеть рядом дурного мужчину ради детей?
  4. T.V.: Тебе больше нравится выступать на больших фестивалях? или на небольших концертных площадках, например клубах?
  5. V Пример
  6. V Пример
  7. V Пример

Приведённый выше пример имеет большую посылку в качестве исходного суждения «Все металлы электропроводны», а меньшую посылку в качестве второго суждения «Цинк — металл».

 

Приняв условие строгой логической формы ПКС, можно все возможные варианты местоположения М в структуре посылок выразить в виде четырёх фигур ПКС.

Фигуры ПКС — это его логические формы, различаемые по местоположению в посылках среднего термина (рис. 11).

 

M P S M __________________________ S ___________________ P   Фигура I P M S M __________________________ S ___________________ P   Фигура II M P M S __________________________ S ___________________ P   Фигура III P M M S __________________________ S ___________________ P   Фигура IV

 

Рис. 11

 

Поскольку фигура ПКС состоит из трёх суждений, каждое из которых в соответствии с качественно-количественными показателями может выражаться четырьмя формулами (SaP, SiP, SeP, SoP), то теоретически возможны 43, т. е. 64 разновидности (модуса) одной фигуры и 256 разновидностей ПКС по всем фигурам.

Модусы фигур ПКС — это его разновидности, отличающиеся друг от друга качественно-количественной характеристикой входящих в них посылок и заключения.

Обозначение модусов осуществляется записью качественно-количественных показателей входящих в ПКС суждений, например, ааа, аеi, ieo и т. п. Однако не в каждом модусе ПКС имеет место логическое следование заключения из посылок.

 


Дата добавления: 2015-09-05; просмотров: 72 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
V Пример| Модельные схемы простого категорического силлогизма

mybiblioteka.su - 2015-2024 год. (0.007 сек.)