Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Метод степенных рядов

Читайте также:
  1. Case-метод Баркера
  2. I. Методические рекомендации по выполнению самостоятельной работы студентов.
  3. I. Организационно-методический раздел
  4. I. Понятие, формы и методы финансового контроля
  5. II. Материалы и методы
  6. II. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ
  7. III. Источники и методы получения аудиторских доказательств при проверке кредитов и займов

Этот метод, по-существу принадлежит Пуассону, который сделал первую попытку применить его к тригонометрическим рядам. Он состоит в следующем.

По данному числовому ряду А= ∑an=a0+a1+…+an

строится степенной ряд

( 1)

Если этот ряд для сходится и его сумма при имеет предел А:

,

то число А и называют “обобщённой (в смысле Пуассона) суммой” данного ряда.

Примеры.

 

1) Ряд, рассмотренный Эйлером:

 

Здесь уже в силу самого определения приводит к степенному ряду, сумма которого при стремится к пределу . Значит, число , действительно, является “обобщенной суммой” указанного в точном установленном здесь смысле.

 

2) Возьмем более общий пример: тригонометрический ряд

(2)

является расходящимся при всех значениях

Если образовать степенной ряд:

(здесь буква заменяет прежнюю букву ), то его сумма при значении , отличном от 0, будет

(3)

 

и при стремится к 0. Таким образом, для “обобщенной суммой” ряда будет 0. если , то ряд (2), очевидно имеет сумму, равную ; впрочем, выражение (3), которое в этом случае сводится к , также имеет пределом .

3) Аналогично ряд

,

 

который сходится лишь при или , приводит к степенному ряду

.

Так что “обобщенная сумма" на этот раз оказывается равной при и равной нулю при .

Непосредственно ясно, что рассматриваемый метод “обобщенного суммирования” является линейным. Что же касается регулярности этого метода, то она устанавливается следующей теоремой Абеля.

 


Дата добавления: 2015-08-17; просмотров: 262 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Зачем европейцы врут?| Теорема Абеля

mybiblioteka.su - 2015-2025 год. (0.007 сек.)