Читайте также:
|
|
Геотермальная энергетика — получение энергии от внутреннего тепла Земли. Различают естественную и искусственную геотермальную энергию — от природных термальных источников и от закачки в недра Земли воды, других жидкостей или газообразных веществ ("сухая" и "мокрая" геотермальная энергетика). Данный вид энергетики широко применяется для бытовых целей и отопления теплиц. Имеются геотермальные ТЭС. Недостаток — токсичность термальных вод и химическая агрессивность жидкостей и газов.
Космическая энергетика — получение солнечной энергии на специальных геостационарных спутниках Земли с узконаправленной передачей энергии на наземные приемники.
На этих спутниках солнечная энергия трансформируется в электрическую и в виде электромагнитного луча сверхвысокой частоты передается на приемные станции на Земле, где преобразуется в электрическую энергию. Мощность одной орбитальной станции может составить от 3000 до 15 000 МВт.
Морская энергетика базируется на энергии приливов и отливов (Кислогубская ЭС на Кольском полуострове), морских течений и разности температур в различных слоях морской воды. Иногда к ней относят волновую энергетику. Пока морская энергетика малорентабельна из-за разрушающего воздействия на оборудование морской воды. Приливная энергетика рентабельна на побережьях морей с исключительно высокими приливами.
Низкотемпературная энергетика — получение энергии с использованием низкотемпературного тепла Земли, воды и воздуха, вернее разности в температурах их различных слоев. Промышленное получение энергии с использованием разности температур на поверхности и в глубинах океана пока не выходит за рамки опытных установок.
"Холодная" энергетика — способы получения энергоносителей путем физико-химических процессов, идущих при низких температурах и сходных с происходящими в растениях. Например, разложение воды на асимметричных мембранах под воздействием солнечного света. Молекула воды распадается на водород и кислород, скапливающиеся по разные стороны этой мембраны. Водород затем используют как энергоноситель. КПД таких мембран в последние годы удалось заметно повысить, а цену — понизить. Вероятно, это перспективный путь. Предполагается, что водород будет широко использоваться в авиации, водном и наземном транспорте, промышленности, сельскохозяйственном производстве. Сжигание водорода не дает вредных выбросов, но он взрывоопасен.
Управляемая термоядерная реакция. Физики работают над освоением управляемой термоядерной реакции синтеза ядер тяжелого водорода с образованием гелия. При таком соединении выделяется громадное количество энергии, гораздо больше, чем при делении ядер урана.
Доказано, что основная доля энергии Солнца и звезд выделяется именно при синтезе легких элементов. Если удастся осуществить управляемую реакцию синтеза, появится неограниченный источник энергии.
Ученые уверены, что в начале следующего тысячелетия получение энергии за счет термоядерного синтеза превратится из чисто теоретической концепции в обыденную реальность.
Весьма перспективными являются энергетические установки, преобразующие одни виды энергии в другие нетрадиционными способами с высоким КПД.
Тепловую энергию в электрическую преобразует магнито-гидродинамический генератор (МГД), который относится к перспективным устройствам (рис. 2.4).
Плазма (ионизированный газ) с добавкой легко ионизирующего вещества (≈1 % Na или К) поступает в канал МГД-генератора при 3000°С и разгоняется в нем. Электропроводная плазма пересекает силовые линии магнитного поля, при этом положительные ионы отклоняются в одну, а отрицательные — в другую сторону. Концентрация положительных и отрицательных ионов на металлических пластинах придает им положительный или отрицательный потенциал; пластины становятся источником ЭДС. При замыкании электродов на внешнюю цепь возникает ток. КПД ТЭС с МГД-генераторами -60 %.
Большой интерес уделяют непосредственному преобразованию химической энергии органического топлива в электрическую — созданию топливных элементов. Распространение получили низкотемпературные (t = 150°С) топливные элементы с жидким электролитом (концентрированные растворы серной или фосфорной кислот и щелочей КОН). Топливом в элементах служит водород, окислителем — кислород из воздуха.
Рис. 2.4. Схема МГД- генератора:
1 — камера сгорания; 2 — МГД-канал; 3 — магнитная система; 4 — электроды
Образование электроэнергии в элементе — это процесс обмена электронами между горючим и окислителем с образованием нового соединения — продукта реакции (рис. 2.5).
Рис. 2.5. Схема водородно-кислородного элемента:
1 — катод; 2 — электролит; 3 — анод
Отличие реакции в элементе от реакции окисления при горении в том, что в нем процессы протекают с точки зрения термодинамики обратимо, т.е. разность энергий электронов у исходных веществ и продуктов реакции непосредственно превращается в электроэнергию (упорядоченное движение электронов). При горении же химическая энергия переходит в энергию хаотического теплового движения атомов, молекул и их частей.
Суммарная реакция в элементе имеет вид:
2Н2 + Ог → 2Н2О (продукт реакции).
КПД элементов выше 90 %. Нет топок, котлов, турбин, генератора, но пока их мощность мала.
Один из способов прямого преобразования энергии — использование термоэмиссионных генераторов (ТТ) (рис. 2.6).
Рис. 2.6. Схема термоэмиссионного генератора (ТГ):
1 — катод; 2 — подводимая теплота; 3 — отводимая теплота; 4 — анод
Термоэмиссионный генератор (ТГ) — это два плоских (или коаксильных) электрода, разделенных промежутком и включенных в цепь с нагрузкой. На катод от источника теплоты поступает энергия, достаточная для поддержания термоэлектронной эмиссии (процесс самопроизвольного испускания электронов с поверхности тела в окружающую газовую среду или вакуум). В процессе эмиссии электронов катод охлаждается, электроны из катода попадают на анод. При этом электроны отдают аноду часть своей кинетической энергии, нагревают его и создают избыток их на аноде. Избыток электронов стекает по внешней цепи вновь на катод, таким образом, идет постоянный ток. Промежуток между горячей и холодной пластинами заполняют парами цезия, у которых атомы легко распадаются на ионы и электроны. КПД современных термоэмиссионных генераторов 15—20 %.
Ведутся работы по созданию энергетических установок, использующих энергию гравитации, вакуума, низких температур окружающего воздуха для обогревания помещений по принципу теплового насоса ("холодильник наоборот", морозильное отделение которого помещено на улице).
Дата добавления: 2015-08-17; просмотров: 48 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Малая гидроэнергетика | | | Сверхпроводящие системы передачи электроэнергии |