|
Гелиоэнергетика — получение энергии от Солнца. Имеется несколько технологий солнечной энергетики. Фотоэлектрогенераторы для прямого преобразования энергии излучения Солнца, собранные из большого числа последовательно и параллельно соединенных элементов, получили название солнечныхбатарей.
Получение электроэнергии от лучей Солнца не дает вредных выбросов в атмосферу, производство стандартных силиконовых солнечных батарей также причиняет мало вреда. Но производство в широких масштабах многослойных элементов с использованием таких экзотических материалов, как арсенид галлия или сульфид кадмия, сопровождается вредными выбросами.
Солнечные батареи занимают много места. Однако в сравнении с другими источниками, например с углем, они вполне приемлемы. Более того, солнечные батареи могут помещаться на крышах домов, вдоль шоссейных дорог, а также использоваться в богатых солнцем пустынях.
Особенности солнечных батарей позволяют располагать их на значительном расстоянии, а модульные конструкции можно легко транспортировать и устанавливать в другом месте. Поэтому солнечные батареи, применяемые в сельской местности и в отдаленных районах, дают более дешевую электроэнергию. И, конечно, солнечных лучей по всему земному шару найдется больше, чем других источников энергии.
Жители отдаленных районов используют энергию солнечных батарей для освещения, радиовещания и других бытовых нужд. Практическое применение солнечной энергии следует отметить также при подъеме воды из скважин и на нужды здравоохранения.
Главной причиной, сдерживающей использование солнечных батарей, является их высокая стоимость, которая в будущем, вероятно, снизится благодаря развитию более эффективных и дешевых технологий. Нынешняя стоимость солнечной электроэнергии равняется 4,5 дол.за 1 Вт мощности и, как результат, цена 1 кВт-ч электроэнергии в 6 раз дороже энергии, полученной традиционным путем сжигания топлива. Когда же цена производства солнечной энергии сравняется с ценой энергии от сжигания топлива, оно получит еще более широкое распространение, причем с начала 90-х гг. темпы роста гелио-энергетики составляют 16 % в год, в то время как мировое потребление нефти растет на 1,5 % в год.
Возможно использование солнечной энергии для получения тепловой, в частности, для отопления жилищ.
Однако в условиях нашей страны 80 % энергии Солнца приходится на летний период, когда нет необходимости отапливать жилье, кроме того, солнечных дней в году недостаточно, чтобы использование солнечных батарей стало экономически целесообразным.
На основании двадцатилетнего периода наблюдения установлено, что средняя продолжительность солнечного сияния в Беларуси составляет 1815 часов в год. Годовой приход суммарной солнечной радиации на горизонтальную поверхность — 980—1180 кВт-ч/м2. Наиболее благоприятным для применения теплосистем является период с апреля по сентябрь. Проведенный сравнительный анализ продолжительности солнечного сияния и прихода суммарной солнечной радиации в странах Западной Европы с умеренным климатом, расположенных между 50 и 60 °с.ш., показал, что Беларусь по продолжительности солнечного сияния имеет близкие значения с этими странами, а по приходу среднемесячной солнечной радиации даже превосходит северную часть Германии, Швецию, Данию, Великобританию. Эти государства наряду с "солнечными странами" считаются лидирующими в Европе по выпуску и применению гелиоэнергетического оборудования.
В Республике Беларусь целесообразны три варианта использования солнечной энергии:
• пассивное использование солнечной энергии методом строительства домов "солнечной архитектуры". Расчеты показывают, что количество энергии, падающей на южную сторону крыши домов площадью 100 м2 на широте Минска, вполне хватает даже для отопления зимой (при том, что 10 % солнечной энергии аккумулируется летом и затраты на отопление квадратного метра в отопительный сезон составляют 70 кВт-ч при хорошей теплоизоляции стен, полов, потолков). Размеры дешевого гравийного теплового аккумулятора под домом при этом вполне приемлемы: 10 х 10 х 1,5 м3. Однако в настоящее время полностью игнорируются даже принципы пассивного солнечного отопления. Единственное здание в Беларуси, построенное с использованием этого принципа — немецкий Международный Образовательный Центр (IBB) в Минске;
• использование солнечной энергии для целей горячего водоснабжения и отопления с помощью солнечных коллекторов;
• использование солнечной энергии для производства электроэнергии с помощью фотоэлектрических установок.
На теплоснабжение зданий используется около 40 % всего расходуемого топлива. В Беларуси существующие дома имеют теплопотребление более 250 кВт-ч/м2. Если проектирование зданий проводить с учетом энергетического потенциала климата местности и условий для саморегулирования теплового режима зданий, то расход энергии на теплоснабжение можно сократить на 20—60 %. Так, строительство на принципах "солнечной архитектуры" может снизить удельное годовое теплопотребление до 70—80 кВтч/м2.
Солнечные коллекторы позволяют обеспечить такие дома теплом, а также теплой водой для нужд проживающих в них людей.
Результаты экспериментальных исследований позволили выбрать материалы, конструкцию гелиоколлекторов и схемы гелиоустановок. Разработан и внедрен ряд гелиоводоподогревателей производственного и бытового назначения.
В настоящее время финансируется создание отечественной установки на фотоэлементах. Одна солнечная электростанция установлена в Беловежской пуще и отапливает два дома, еще несколько установлено в чернобыльской зоне. Солнечные коллекторы, вырабатывающие тепло, рекомендуется устанавливать в коттеджах и загородных домах. Они экономичнее традиционных угольных котлов.
Создано опытное производство систем горячего водоснабжения, базирующихся на использовании солнечной энергии. Эти устройства включают в себя солнечные коллекторы (их число и площадь может варьироваться в зависимости от требований конкретного проекта) и теплонакопители. Оптимальный для местного климата вариант — система с четырьмя коллекторами — позволяет обеспечить потребности в горячем водоснабжении семью из 4—5 человек. Благодаря большой площади поверхности коллекторов система аккумулирует достаточное количество солнечной энергии даже в пасмурную погоду, а теплонакапитель большой вместимости (более 500 л) позволяет создать стратегический запас горячей воды. В период с марта по октябрь система полностью удовлетворяет потребности здания в горячей воде. Зимой установку можно интегрировать со стандартной системой отопления. Стоимость оборудования варьирует в пределах 900—3500 дол. США.
Кроме того, в Республике Беларусь организовано производство гелиосистем для нагрева воды. Они представляют собой легкие, компактные конструкции, собираемые по модульному принципу. В зависимости от конкретных условий можно получить установку любой производительности. Основой гелиосистем является пленочно-трубочный адсорбирующий коллектор. Он обладает высокой адсорбирующей способностью, благодаря чему даже небольшие дозы солнечного излучения превращаются в полезную тепловую энергию. Теплообменники, входящие в состав систем, изготовляются из специальных материалов, исключающих коррозию или замерзание. Пробные гелиосистемы устанавливают на земле, плоских и скатных крышах, в вагонах-бытовках и т.д. Гелиоустановки могут подключаться к централизованной системе отопления или работать автономно с заправкой бака-накопителя требуемой емкости. Приблизительная цена систем составляет 400 дол. США.
Однако в целом в ближайшее время на значительное увеличение доли солнечной энергетики в Беларуси рассчитывать не приходится. Но специалисты убеждены, что к 2060 году доля энергии Солнца на мировом энергетическом рынке превысит 50 %.
Интересны примеры использования солнечной энергии в разных странах.
В условиях Великобритании жители сельской местности покрывают потребность в тепловой энергии на 40—50 % за счет использования энергии Солнца.
В Германии (под Дюссельдорфом) проводились испытания солнечной водонагревательной установки площадью коллекторов 65 м2. Эксплуатация установки показала, что средняя экономия тепла, расходуемого на обогрев, составила 60 %, а в летний период — 80—90 %. Для условий Германии семья из 4 человек может обеспечить себя теплом при наличии энергетической крыши площадью 6—9 м2.
Современные солнечные коллекторы могут обеспечить нужды сельского хозяйства в теплой воде в летний период на 90 %, в переходный период — на 55—65 %, в зимний — на 30 %.
В Австрии установлено, что для обеспечения 80 % теплой водой в жилых сельских домах на 1 человека требуется установка солнечных коллекторов с поверхностью 2—3 м2 и емкостью бака для воды 100—150 л. Установка площадью 25 м2 с емкостью для нагретой воды на 1000—1500 л обеспечивает теплой водой 12 человек или небольшой сельский двор.
Наиболее эффективно в странах ЕС солнечные энергоустановки эксплуатируются в Греции, Португалии, Испании, Франции: выработка энергии солнечными энергоустановками составляет соответственно 870 000, 290 000, 255 200, 174 000 МВт-ч в год.
В целом по Европейскому союзу вырабатывается 185600 МВт-ч в год (по данным 1992г.).
Наибольшей суммарной площадью установленных солнечных коллекторов располагают: США — 10 млн м2, Япония — 8 млн м2, Израиль — 1,7 млн м2, Австралия — 1,2 млн м2. В настоящее время 1 м2 солнечного коллектора вырабатывает электрической энергии:
4,86—6,48 кВт-ч в сутки;
1070—1426 кВт-ч в год.
Нагревает воды в сутки:
420—360 л (при 30 °С);
210—280 л (при 40 °С);
130—175 л (при 50 °С);
90—120 л (при 60 °С).
Экономит в год:
электроэнергии — 1070—1426 кВт-ч;
условного топлива — 0,14—0,19 т;
природного газа — 110—145 нм3;
угля — 0,18—0,24 т;
древесного топлива — 0,95—1,26 т.
Площадь солнечных коллекторов 2—6 млн м обеспечивает выработку 3,2—8,6 млрд кВт-ч энергии и экономит 0,42—1,14 млн т у.т. в год.
Дата добавления: 2015-08-17; просмотров: 65 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Ветроэнергетика | | | Биоэнергетика |