Читайте также:
|
|
Сигнал, поступающий с выхода КПТ, должен быть отождествлен с “1” или “0”. Процесс определения и запоминания значащей позиции сигнала данных – называется регистрацией.
Наиболее распространены для регистрации методы стробирования и интегрирования.
Метод стробирования – значащая позиция принимаемого элемента определяются на основании анализа знака импульса в середине единичного интервала.
Если индивидуальное КИ не превышает , то элемент регистрируются правильно.
Говорят идеальная исправляющая способность 50%.
Исправляющая способность – это величина, на которую допускаются смещения ЗМ, не вызывающее неправильный прием элемента.
Простейшая схема регистрации методом стробирования.
Схема состоит из входного устройства, двух ключей и RS-триггера. Входное устройство имеет два выхода на один транслируется входной сигнал без изменений, а на другой с инверсией (точки 1 и 2). Стробирующие импульсы открывают ключи на время своего существования. Через ключи высокий потенциал поступает на один из входов тригера и переводит его в соответствующее состояние. Последовательность 4 – устанавливает триггер в “1”, а 5 – сбрасывает триггер в “0”.
Интегральный метод регистрации
Решение о виде принятого элемента выносится на основании анализа напряжения на всем единичном интервале.
В идеальном случае (если единичный. элемент не искажен), то Uвых= 1
решением о “1” принимается при ;
решением о “0” принимается при .
В цифровом виде интегральный метод может быть реализован на основе многократного стробирования.
Структурная схема интегрального метода.
На ключ поступают стробирущие импульсы. Управление ключом производится сигналом с выхода порогового устройства. Импульсы прошедшие ключ подсчитываются счетчиком. По приходу тактового импульса решающее устройство считывает показание счетчика, сравнивает его с пороговым значением и принимает решение о значащей позиции на текущем интервале.
Алгоритм принятия решения:
Пусть за время неискаженной токовой посылки появляется N тактовых импульсов, тогда:
если показание счетчика – решение “1”
если меньше, то “0”
Временные диаграммы работы данной схемы приведены на следующем рисунке
Сравнение методов регистрации.
1. Вероятность ошибки при действии КИ у метода стробирования меньше [стробирование лучше].
2. При дроблениях лучше интегральный метод .
6.
Формула Шеннона для непрерывного (аналогового) канала достаточна проста:
Vмакс= f*log2(1+S/N). (1)
где Vмакс– максимальная скорость передачи (бит/сек), f – полоса пропускания линии передачи и, одновременно, полоса частот, занимаемая сигналами (если не используется частотное разделение каналов), S/N – отношение сигнал/шум по мощности. График этой зависимости приведен на рис. 17.2(формуле Шеннона соответствует кривая под названием "теоретический предел").
Рис. 17.2. Зависимость максимальной скорости передачи Vмакс для аналоговой линии от отношения сигнал-шум по мощности S/N
Под шумом понимается любой нежелательный сигнал, в том числе внешние помехи или сигнал, вернувшийся к передающему устройству – может быть и модему – в результате отражения от противоположного конца линии. Сами по себе сосредоточенные помехи не столь существенно ограничивают пропускную способность аналогового канала, как непредсказуемый в каждый момент времени белый гауссовский шум. "Умные" высокоскоростные модемы умеют, как будет отмечено в дальнейшем, определять уровень и задержку "своих" отраженных сигналов и компенсировать их влияние.
Формулы Шеннона показывают, что наиболее эффективный способ повышения максимальной скорости передачи Vмакссостоит в увеличении полосы пропускания линии передачи f (Vмакс~ f). Логарифмическая зависимость Vмаксот отношения сигнал/шум S/N делает этот путь повышения Vмаксгораздо менее перспективным и более трудоемким.
Отношение сигнал/шум (ОСШ, англ. SNR, Signal-to-Noise Ratio) — безразмерная величина, равная отношению мощности полезного сигнала к мощности шума.
где P — средняя мощность, а A — среднеквадратичное значение амплитуды. Оба сигнала измеряются в полосе пропускания системы.
Обычно отношение сигнал/шум выражается в децибелах. Чем больше это отношение, тем меньше шум влияет на характеристики системы.
Если спектр полезного сигнала отличается от спектра шума, улучшить отношение сигнал/шум можно ограничением полосы пропускания системы.
7.
Межсимвольная интерференция (МСИ) - Паразитный эффект, связанный с «перекрытием» по длительности соседних символов сигнала в канале с многолучевым распространением радиоволн. При передаче с высокими скоростями – 2400-9600 бит/с и выше, т.е. при удельных скоростях Бод/Гц и более, наиболее главными становятся искажения АЧХ и ФЧХ. Дело в том, что эти искажения вызывают изменения формы переданных сигналов, появления «хвостов» которые тянутся за сигналами переносчиками. Это явление получило название межсимвольной интерференции
Межсимвольная интерференция ярко проявляется при высоких скоростях передачи информации. Это возникает потому, что большую скорость передачи реализуют обычно с помощью увеличения числа позиций в системе (равного, например, числу использованных фаз в системе с фазовой модуляцией), либо скорости модуляции (т.е. числа следующих друг за другом сигналов переносчиков, переданных на интервале времени длительностью в 1 с).
Шеннон по существу развил идеи Найквиста. Если используется двоичное представление сигнала, то согласно теореме Найквиста [1924] максимальная скорость передачи данных I по каналу без шума составит:
I=2F×log2V [бит/сек], [1.2]
где F - полоса пропускания канала в Гц, а V - число дискретных уровней сигнала на выходе цифрового преобразователя. Суть теоремы Найквиста-Котельникова заключается в том, что при полосе сигнала F частота стробирования должна быть больше 2F, чтобы принимающая сторона могла корректно восстановить форму исходного сигнала. По этой причине для стандартного телефонного канала с полосой F=3кГц, при отсутствии шумов и при V=2 нельзя получить скорость передачи более 6кбит/с.
8. Существует большая группа алфавитных кодов, когда исходный двоичный сигнал преобразуется в линейный код не замещением серии пробелов (символов «0»), а преобразованием (делением) символов исходной двоичной последовательности на группы (блоки) и заменой каждой из этих групп кодовыми комбинациями (группами) линейного кода с таким же или другим основанием. Эти коды принято обозначать двумя буквами и двумя цифрами. Первая цифра определяет, какое число символов исходного кода входит в перекодируемую группу. Затем следует буква В (Binary), которая указывает на основание системы счисления исходного двоичного кода. Вторая цифра соответствует числу символов в каждой группе линейного кода, за которой следует вторая буква, обозначающая основание системы счисления линейного кода: T - троичная (Тernary); Q – четверичная (Quaternary) и т. д
При перекодировании исходные сигналы заменяются сигналами другой структуры спектральные характеристики которых лучше согласуются с параметрами заданного канала связи.
Помимо основной задачи – согласования спектров при перекодировании стараются подобрать такой код, который обеспечивал бы:
· наименьшую ширину спектра при одинаковой скорости передачи;
· синхронизацию между передатчиком и приёмником;
· низкую стоимость реализации;
· возможность обнаруживать ошибки.
RZ (Return to Zero)
Сущность этого трехуровневого кода заключена в его названии — кодирование с возвратом к нулю (Return to Zero) (рис. 1). Логическому нулю соответствует положительный импульс напряжения, логической единице — отрицательный. Информационный переход осуществляется в начале бита, возврат к нулевому уровню — в середине.
Основной характеристикой кода RZ является то, что в середине каждого бита всегда есть переход (положительный или отрицательный), обозначающий каждый бит. Нужный для обработки сигнала синхроимпульс (строб) выделяется приемником из самого сигнала. Коды со стробом называются самосинхронизирующимися.
Код RZ не отличается высокой плотностью передачи данных — при тактовой частоте 10 МГц она равна всего 10 Мбит/с. К тому же, чтобы различать три уровня сигнала, на входе приемника необходимо обеспечить лучшее отношение сигнал/шум, чем при использовании двух уровней.
Наиболее часто код RZ применяется в оптоволоконных линиях связи. Однако при передаче используются три уровня мощности световых импульсов, поскольку оптические сигналы не бывают положительными или отрицательными.
Манчестерский код
Манчестерский код, или Манчестер-II, получил наибольшее распространение в локальных сетях. Он, как и RZ, является самосинхронизирующимся кодом, но в отличие от него имеет не три, а два уровня, что обеспечивает лучшую помехозащищенность канала. Логическому нулю соответствует переход на верхний уровень в центре битового интервала, логической единице — переход на нижний уровень.
Логика кодирования хорошо видна на примере передачи последовательности единиц или нулей. При передаче чередующихся битов частота следования импульсов уменьшается в два раза. Изменения сигнала в середине бита остаются, а на границе битовых интервалов отсутствуют. Эта логическая функция выполняется с помощью последовательности запрещающих импульсов, которые синхронизируются с информационными импульсами и запрещают нежелательные граничные переходы.
Важная характеристика манчестерского кода — отсутствие у сигнала постоянной составляющей при передаче длинной последовательности единиц или нулей. Благодаря этому передатчики и приемники можно “развязать” гальванически с помощью импульсных трансформаторов.
Спектр сигнала при манчестерском кодировании содержит только две частотные составляющие. Для десятимегабитового протокола это 10 МГц при передаче последовательности одних нулей или единиц и 5 МГц при их чередовании. Поэтому все другие частоты можно удалить с помощью полосовых фильтров.
Код Манчестер-II нашел применение в оптоволоконных и электропроводных сетях. Самый распространенный протокол локальных сетей — Ethernet 10 Мбит/с использует именно его.
Код NRZ
Код NRZ (Non Return to Zero), т. е. без возврата к нулю, является простейшим двухуровневым кодом (рис. 3). Нулю здесь соответствует нижний уровень сигнала, единице — верхний. Информационные переходы совпадают с границей битов. Вариант кода — NRZI (Non Return to Zero Inverted) имеет обратную полярность.
Несомненное достоинство кода — его простота: сигнал не надо кодировать и декодировать. Кроме того, числовое значение скорости передачи данных вдвое превышает тактовую частоту. Максимальная же частота спектра соответствует чередованию нулей и единиц. Для других комбинаций частота будет меньше, а при передаче последовательности одинаковых битов сигнал вовсе отсутствует.
Код NRZ и его разновидность NRZI не обеспечивают синхронизации между передатчиком и приемником, и это является самым большим его недостатком.
Для синхронизации начала приема пакета используется стартовый служебный бит, например единица. Наиболее известное современное применение кода NRZI — стандарт ATM155. Многие годы популярным был протокол связи через последовательный порт компьютеров — RS232А, тоже использующий код NRZ.
9.
Амплиту́дная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда
Пусть
S (t) — информационный сигнал, | S (t) | < 1,
Uc (t) — несущее колебание.
Тогда амплитудно-модулированный сигнал U am(t) может быть записан следующим образом:
Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал Uc (t), модулированный по амплитуде сигналом S (t) с коэффициентом модуляции m. Предполагается также, что выполнены условия:
Выполнение условий (2) необходимо для того, чтобы выражение в квадратных скобках в (1) всегда было положительным. Если оно может принимать отрицательные значения в какой-то момент времени, то происходит так называемая перемодуляция (избыточная модуляция). Простые демодуляторы (типа квадратичного детектора) демодулируют такой сигнал с сильными искажениями.
Частотная модуляция (ЧМ) — вид аналоговой модуляции, при котором информационный сигнал управляет частотой несущего колебания. По сравнению с амплитудной модуляцией здесь амплитуда остаётся постоянной.
Частотная модуляция была предложена американцем Эдвином Армстронгом и запатентована им 26 декабря 1933 года.
Частотная модуляция применяется для высококачественной передачи звукового (низкочастотного) сигнала в радиовещании (в диапазоне УКВ), для звукового сопровождения телевизионных программ, передачи сигналов цветности в телевизионном стандарте SECAM, видеозаписи на магнитную ленту, музыкальных синтезаторах.
Фазовая модуляция — один из видов модуляции колебаний, при которой фаза несущего колебания управляется информационным сигналом. Фазомодулированный сигнал s (t) имеет следующий вид:
,
где g (t) — огибающая сигнала; является модулирующим сигналом; fc — частота несущей; t — время.
Фазовая модуляция, не связанная с начальной фазой несущего сигнала, называется относительной фазовой модуляцией (ОФМ).
В случае, когда информационный сигнал является дискретным, то говорят о фазовой манипуляции. Хотя, строго говоря, в реальных изделиях манипуляции не бывает, так как для сокращения занимаемой полосы частот манипуляция производится не прямоугольным импульсом, а колоколообразным (приподнятым косинусом и др.). Несмотря на это, при модуляции дискретным сигналом говорят только о манипуляции.
По характеристикам фазовая модуляция близка к частотной модуляции. В случае синусоидального модулирующего (информационного) сигнала, результаты частотной и фазовой модуляции совпадают.
10.
При частотной манипуляции (ЧМн, англ. Frequency Shift Keying (FSK)) значениям «0» и «1» информационной последовательности соответствуют определённые частоты синусоидального сигнала при неизменной амплитуде. Частотная манипуляция весьма помехоустойчива, поскольку помехи телефонного канала искажают в основном амплитуду, а не частоту сигнала. Однако при частотной манипуляции неэкономно расходуется ресурс полосы частот телефонного канала. Поэтому этот вид модуляции применяется в низкоскоростных протоколах, позволяющих осуществлять связь по каналам с низким отношением сигнал/шум.
Частотная манипуляция с минимальным сдвигом (англ. Minimal Shift Keying (MSK)) представляет собой способ модуляции, при котором не происходит скачков фазы и изменение частоты происходит в моменты пересечения несущей нулевого уровня. MSK уникальна потому что значение частот соответствующих логическим «0» и «1» отличаются на величину равную половине скорости передачи данных. Другими словами, индекс модуляции равен 0,5:
Амплитудная манипуляция (АМн; англ. amplitude shift keying (ASK), а также англ. continuous wave (CW)) — изменение сигнала, при котором скачкообразно меняется амплитуда несущего колебания. АМн можно рассматривать частный случай квадратурной манипуляции (КАМн англ. quadrature amplitude shift keying (QASK)).
Фа́зовая манипуля́ция (ФМн, англ. phase-shift keying (PSK)) — один из видов фазовой модуляции, при которой фаза несущего колебания меняется скачкообразно.
Фазоманипулированный сигнал имеет следующий вид:
где g (t) определяет огибающую сигнала является модулирующим сигналом.
может принимать M дискретных значений.
Если M = 2, то фазовая манипуляция называется двоичной фазовой манипуляцией ((BPSK, B-Binary — 1 бит на 1 смену фазы), если M = 4 — квадратурной фазовой манипуляцией (QPSK, Q-Quadro — 2 бита на 1 смену фазы), M = 8 (8-PSK — 3 бита на 1 смену фазы) и т. д. Таким образом, количество бит n, передаваемых одним перескоком фазы, является степенью, в которую возводится двойка при определении числа фаз, требующихся для передачи n -порядкового двоичного числа.
11.
Многопозиционная фазовая модуляция.
Как было показано ранее, скорость модуляции в канале определяется шириной спектра канала:
Канал ТЧ имеет спектр 0,3 - 3,4 к Гц. D Fтч =3,1 к Гц.
Таким образом, максимальная скорость модуляции, которую теоретически можно достичь в кТЧ 6,2 Бод (передача одной боковой) 3,1 кБод (при передаче двух боковых).
Реально же в модемах используются скорости модуляции обычно 1200 и 2400 Бод.
Если для передачи использовать двухпозиционный сигнал, то скорость передачи информации будет такой же низкой R=B=2400 Бит/сек.
Такие скорости сегодня не устраивают потребителя.
Выходом в данном случае является использование сигналов переносящих более чем 1 бит информации (то есть многопозиционных сигналов).
Многопозиционный сигнал имеет более чем две значащих позиции
Число значащих позиций | информационная емкость элемента |
1 бит | |
2 бит | |
3 бит |
Применение данного принципа к относительно фазовой модуляции называется многопозиционной ОФМ.
Рассмотрим простейший случай Двукратная ОФМ.
двукратная или четырехпозиционная.
При ДОФМ два соседних сигнала могут отличаться по фазе на одно из четырех возможных значений.
Дибит | ||||
Первоначально исходная последовательность разбивается на дибиты (по 2 элемента), а затем каждый дибит кодируется на единичном интервале в соответствии с модуляционным кодом.
В данном случае обеспечивается R=2B.
Диаграмма ДОФМ на сигнальной плоскости выглядит так.
Протокол V. 22.
B = 600 Бод. В режиме ОФМ - 600 бит/с. В режиме ДОФМ - 1200 бит/с.
Еще более повысить скорость R можно используя:
трехкратную (восьмипозиционную) или
четырехкратную (шестнадцати позиционную) модуляции.
Однако при увеличении числа разрешенных сдвигов фаз резко уменьшается помехоустойчивость ОФМ.
Уменьшается расстояние между разрешенными сигналами в пространстве. Вследствие этого, ОФМ кратностью более трех не используется.
Для большего увеличения скорости передачи используют амплитудно-фазовую или так называемую квадратурную - амплитудную модуляцию КАМ.
В КАМ изменяется не только фаза, но и амплитуда. На рисунке показана диаграмма КАМ – 16.
Использование КАМ - 16 позволяет при скорости модуляции 2400 Бод,
получать скорость передачи информации 2400 ´ 4 = 9600 бит/с.
Такая модуляция используется в протоколе
V. 32, R до 9600 в.p.s.
Квадратурная модуляция имеет большую помехоустойчивость в сравнении с многократной ОФМ. Но при увеличении числа позиций свыше 16 и ее помехоустойчивость оказывается недостаточно для качественной передачи.
Поэтому во всех современных высокоскоростных протоколах КАМ используется, в совокупности с помехоустойчивым кодированием.
В качестве ПУ кодирования используется один из видов сверточных кодов - решетчатый код. Такое совместное кодирование получило название “Треллис - модуляции” (ТСМ).
При применении Треллис - модуляции число сигнальных точек увеличивается вдвое за счет добавления к информационным битам одного избыточного, образованного путем сверточного кодирования.
Треллис - модуляция используется уже в протоколе V. 32, как альтернатива КАМ - 16. В этом случае к 4 информационным добавлениям 1 проверочный разряд. Получается 32 точки из которых выбирается 16 разрешенных. Треллис – модуляция обеспечивает большую помехоустойчивость.
Треллис - модуляции используется в более поздних протоколах
V. 32 bis - 14.4 b p.s.
V.34 bis - 28.8 b p.s.
12.
Синхронизация – это процедура установления и поддержания определенных временных соотношений между двумя и более процессами.
Различают поэлементную, групповую и цикловую синхронизацию.
При поэлементной синхронизации устанавливаются и поддерживаются требуемые фазовые соотношения между значащими моментами переданных и принятых единичных элементов цифровых сигналов данных. Поэлементная синхронизация позволяет на приеме правильно отделить один единичный элемент от другого и обеспечить наилучшие условия для его регистрации.
Групповая синхронизация – обеспечивает правильное разделение принятой последовательности на кодовые комбинации.
Цикловая синхронизация – обеспечивает правильное разделение циклов временного объединения.
Дата добавления: 2015-07-21; просмотров: 729 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ДИСКРЕТНЫЙ КАНАЛ НЕПРЕРЫВНОГО ВРЕМЕНИ | | | Требования к устройствам синхронизации по элементам. |