Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Правила дифференцирования

Основы дифференциального исчисления . Понятие производной. | Производная высших порядков. | Дифференцирование функций заданных параметрически. | Теорема Коши. | Формула Тейлора. | Производные степенных и тригонометрических функций. | Признаки экстремума функций. | Поиск наибольшего и наименьшего значения непрерывных функций на замкнутом промежутке. | Выпуклость графика функции. | Асимптоты. |


Читайте также:
  1. I. ПРАВИЛА ЧТЕНИЯ В АНГЛИЙСКОМ ЯЗЫКЕ
  2. II. Общие правила
  3. II. Общие правила
  4. III. Общие правила внесения сведений в Реестр
  5. IV. Общие для всех полос правила
  6. IX. Структура, состав и правила ведения кадастровых дел
  7. Quot;Почти," - мысленно поправила сама себя, вспомнив наши поцелуи. По телу прошла сладкая волна, обосновавшаяся внизу живота. Блин!

Теорема: Если f(x) и g(x) дифферен. в точке х, то:

Доказательство 2-го правила. Теорема о произв. сложной функции.

Если y(x)=f(u(x)) и существует f’(u) и u’(x), то существует y’(x)=f(u(x))u’(x).

Доказательство:

Рассмотрим f(x) в задан. промеж.: [a,b].

g(y): [f(a),f(b)] – наз. обратной к f(x), если g(f(x))=x, для любого " X Î[a,b]

f(g(y))=y, для любого у Î[f(a),f(b)]

y=sin x [-p/2, p/2], тогда

x=arcsin y, yÎ[1,1]

sin arcsin y = y;

arcsin * sin x=x


Дата добавления: 2015-07-25; просмотров: 48 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Физический смысл производной.| Теорема о произв. обратной функции.

mybiblioteka.su - 2015-2025 год. (0.01 сек.)