Читайте также:
|
|
Среди проблем, над которыми я работал, была задача на определение площади параллелограмма.
Не знаю, получите ли вы от результатов моих опытов такое же удовольствие, какое испытал я. Мне кажется, что получите, если последите за мной, разберетесь в существе проблемы и почувствуете трудности, которые возникали на пути и для преодоления которых я должен был находить средства и методы, чтобы психологически уяснить выдвинутую проблему.
I
1. Я прихожу в класс. Учитель говорит: «На предыдущем уроке мы научились определять площадь прямоугольника. Все ли знают, как это делать?»
Ученики отвечают: «Все». Один из них выкрикивает: «Площадь прямоугольника равняется произведению двух его сторон». Учитель одобряет ответ и затем предлагает несколько задач с различными размерами сторон, которые все были сейчас же решены.
«А теперь, — говорит учитель, — мы пойдем дальше». Он чертит на доске параллелограмм: «Это параллелограмм. Параллелограммом называется плоский четырехугольник, противоположные стороны которого равны и параллель-
Рис. 1
ны». Тут один ученик поднимает руку: «Скажите, пожалуйста, чему равны стороны?» «О, стороны могут быть самой разной длины, — отвечает учитель. — В данном слу-
чае величина одной из сторон равна 11 дюймам, другой — 5 дюймам». «Тогда площадь равна 5x11 квадратным дюймам». «Нет, — говорит учитель, — это неверно. Сейчас вы узнаете, как определяется площадь параллелограмма». Он обозначает вершины буквами а, b, с, d.
«Я опускаю один перпендикуляр из левого верхнего угла и другой — из правого верхнего угла.
Продолжаю основание вправо.
Обозначаю новые точки буквами e и f».
Рис. 2
С помощью этого чертежа он приступает затем к обычному доказательству теоремы, согласно которой площадь параллелограмма равна произведению основания на высоту, устанавливая равенство некоторых отрезков и углов и равенство двух треугольников. В каждом случав он приводит ранее выученные теоремы, постулаты или аксиомы, с помощью которых обосновывает равенство. Наконец, он заключает, что теперь доказано, что площадь параллелограмма равна произведению основания на высоту.
«Вы найдете доказательство теоремы, которое я вам показал, в своих учебниках на с. 62. Выучите урок дома, тщательно повторите его, чтобы твердо запомнить».
Затем учитель предлагает несколько задач, в которых требуется определить площади параллелограммов различных размеров, с разными сторонами и углами. Поскольку этот класс был «хорошим», задачи были решены правильно. В конце урока учитель задает в качестве домашнего задания еще десять задач такого же типа.
2.Днем позже я снова оказался в том же классе на следующем уроке.
Урок начался с того, что учитель вызвал ученика и попросил его показать, как определяется площадь параллелограмма. Ученик блестяще продемонстрировал это.
Было видно, что он выучил урок. Учитель шепнул мне: «И это не самый лучший из моих учеников. Без сомнения, остальные тоже хорошо выучили урок». Письменная контрольная работа дала хорошие результаты.
Многие скажут: «Замечательный класс; цель обучения достигнута». Но, наблюдая за классом, я чувствовал какое-то беспокойство. «Что они выучили? — спросил я себя. — Думают ли они вообще? Поняли ли они решение? Не является ли все, что они делают, лишь слепым повторением? Безусловно, ученики быстро выполнили все задания учителя и, таким образом, усвоили нечто общее. Они могли не только слово в слово повторить сказанное учителем, наблюдался также и некоторый перенос. Но поняли ли они вообще, в чем тут дело? Как я могу это выяснить? Что нужно сделать?»
Я попросил у учителя разрешения задать классу вопрос. «Пожалуйста», — с готовностью ответил учитель.
Я подошел к доске и начертил такую фигуру.
Рис. 3 Рис. 4
Некоторые ученики явно растерялись.
Один ученик поднял руку: «Учитель нам этого не объяснял».
Остальные занялись задачей. Они срисовали чертеж, провели вспомогательные линии, как их и учили, опустив перпендикуляры из двух верхних углов и продолжив основание (рис. 4). Они были сбиты с толку, озадачены.
Другие же совсем не казались несчастными. Они уверенно писали под чертежом: «Площадь равна произведению основания на высоту» — правильное, но, по-видимому, совершенно слепое утверждение. Когда же их спро-
сили, могут ли они доказать это с помощью данного чертежа, они были весьма озадачены1.
Третьи вели себя совершенно иначе. Их лица светлели, они улыбались и проводили на рисунке следующие линии или поворачивали лист на 45° и тогда выполняли задание (рис. 5А и 5Б).
Рис. 5А Рис. 5Б
Увидев, что только небольшое число учеников справилось с задачей, учитель с оттенком неудовольствия сказал мне: «Вы, конечно, предложили им необычный чертеж. Естественно, что они не смогли с ним справиться».
Между нами говоря, не думаете ли и вы: «Не удивительно, что, получив такую незнакомую фигуру, многие не смогли с ней справиться». Но разве она менее знакома, чем те вариации первоначальной фигуры, которые давал им ранее учитель и с которыми они справились? Учитель давал задачи, которые сильно варьировались в отношении длины сторон, величины углов и площадей. Эти вариации были явными, и ученикам они вовсе не казались сложными. Вы, быть может, заметили, что мой параллелограмм — это просто повернутая первоначальная фигура, предложенная учителем. В отношении всех своих частей она не больше отличается от первоначальной фигуры, чем вариации, предложенные учителем.
1 Мальчик из другого класса, видя их затруднения, шепнул мне: «В нашем классе проходили задачи с этими перекрывающимися фигурами. Тут виноват учитель. Почему он не рассказал, как работать с такими чертежами?» К моему удивлению, именно с этого сложного доказательства иногда начинается изложение в учебниках. Ученикам не только трудно понять его; оно также совершенно необязательно для решения задач.
Здесь я коротко расскажу об экспериментальной работе с детьми, которых научили определять сначала площадь прямоугольника, а затем площадь параллелограмма (научили проводить вспомогательные линии и получать результат: произведение основания на высоту) и которые знали или не знали доказательство. Потом им задавали вопросы о фигурах, отличавшихся от первоначальной.
Рис. 6
3. Встречаются крайние случаи бессмысленных реакций, когда ученик после предъявления такой простой фигуры, слепо повторяя слова учителя, бормочет: «Один перпендикуляр из левого верхнего угла», проводит его и затем говорит: «Другой — из правого верхнего угла», проводит и его, затем: «Продолжить линию основания вправо» — и, таким образом, получает следующий чертеж:
Рис. 7
4. Однако бывает, что даже шестилетний ребенок, ничего не знающий о геометрии, едва знакомый со способом определения площади прямоугольника, находит самостоятельно красивое и оригинальное решение для параллелограмма, хотя его вовсе этому не учили. Некоторые из этих случаев будут описаны в третьей части данной главы.
Бывает также, что, выучив или обнаружив, как определяется площадь параллелограмма, дети, которых просят найти площадь трапеции или любой из приведенных ниже фигур, оказываются вовсе не беспомощными и после некоторых колебаний, иногда после небольшой подсказки, предлагают прекрасные, подлинные решения типа описанных ниже.
Вот эти задания:
Рис. 8
Для всех этих фигур решение возможно посредством осмысленного изменения фигуры (А -ответы), а не слепого и безуспешного применения заученных операций или некоторых из них (В -ответы).
А —ответы
Рис. 8А
Испытуемые превращают фигуры в прямоугольники, сдвигая треугольники. Они не дают
В —ответы
Рис. 8Б
5. Но остальные дают В -ответы или беспорядочно чередуют А- и В- ответы. Многие ученики вообще отказываются приступить к решению задач 1, 2 и 3, говоря: «Откуда нам знать? Мы этого не учили».
6. Тогда я провел с детьми эксперимент. Сразу же после демонстрации того, как определяется с помощью вспомогательных линий площадь параллелограмма, я клал
Дата добавления: 2015-07-25; просмотров: 55 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ВВЕДЕНИЕ | | | Примеры 1 страница |