Читайте также:
|
|
Предположим, что несколько одинаковых машин в одних и тех же условиях перевозят груз. Любая машина может выйти из строя при этих перевозках. Пусть вероятность выхода из строя одной машины не зависит от выхода из строя других машин. Это значит, что рассматриваются независимые события (испытания). Вероятности выхода из строя каждой из этих машин примем одинаковыми ().
Пусть, в общем случае, производится независимых испытаний. Ставится задача определения вероятности того, что ровно в испытаниях наступит событие , если вероятность наступления этого события в каждом испытании равна . В случае с машинами это могут быть вероятности выхода из строя ровно одной машины, ровно двух машин и т.д.
Определим вначале вероятность того, что в первых испытаниях событие наступит, а в остальных испытаниях — не наступит. Вероятность такого события может быть получена на основании формулы вероятности произведения независимых событий
,
где .
Так как рассматривалась только одна из возможных комбинаций, когда событие произошло только в первых испытаниях, то для определения искомой вероятности нужно перебрать все возможные комбинации. Их число будет равно числу сочетаний из элементов по , т.е. .
Таким образом, вероятность того, что событие наступит ровно в испытаниях определяется по формуле
, (3.3)
где .
Формула (3.3) носит название формулы Бернулли.
Пример. В четырех попытках разыгрываются некоторые предметы. Вероятность выигрыша в каждой попытке известна и равна 0,5. Какова вероятность выигрыша ровно трех предметов?
Решение. По формуле Бернулли находим
Биномиа́льное распределе́ние в теории вероятностей — распределение количества «успехов» в последовательности из независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна .
Содержание
Определение
Пусть — конечная последовательность независимых случайных величин, имеющих одинаковое распределение Бернулли с параметром , то есть при каждом величина принимает значения («успех») и («неудача») с вероятностями и соответственно. Тогда случайная величина
имеет биномиальное распределение с параметрами и . Это записывается в виде:
.
Случайную величину обычно интерпретируют как число успехов в серии из одинаковых независимых испытаний Бернулли с вероятностью успеха в каждом испытании.
Функция вероятности задаётся формулой:
где
— биномиальный коэффициент.
Дата добавления: 2015-11-14; просмотров: 34 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Формула Пуассона. Примеры вычисления | | | Choose the best answer. |