Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Оценка влияния гидравлического сопротивления на русловой поток

Тема 1. Одномерный русловой поток и | Сопротивление зернистой шероховатости. Коэффициент шероховатости | Графики Никурадзе и Зегжды. | Сопротивление донных гряд | Сопротивление формы русла | Сопротивление поймы | Сопротивление ледяного покрова | Сопротивление растительности | И расширением русла | По глубине потока |


Читайте также:
  1. V. ОЦЕНКА КАЧЕСТВА И КЛАССИФИКАЦИЯ ДОКАЗАТЕЛЬНОЙ СИЛЫ МЕТОДОВ, ПРИВЕДЕННЫХ В РАЗДЕЛЕ ЛЕЧЕНИЕ.
  2. VI. ОЦЕНКА КАЧЕСТВА И КЛАССИФИКАЦИЯ ДОКАЗАТЕЛЬНОСТИ ИСЛЛЕДОВАНИЙ ПО ТЕХНОЛОГИИ МОНИТОРИНГА ВЧД.
  3. VII. РОЛЬ НЕФОРМАЛЬНЫХ ПОДРОСТКОВЫХ КРИМИНОГЕННЫХ ГРУПП В ДЕСОЦИАЛИЗАЦИИ НЕСОВЕРШЕННОЛЕТНИХ И ПУТИ НЕЙТРАЛИЗАЦИИ ИХ ВЛИЯНИЯ
  4. VIII. ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ МАГИСТРАТУРЫ
  5. А) завихрение потока воздуха при прохождении через голосовую щель
  6. А. Определение удельного сопротивления грунта.
  7. Анализ жалоб посетителей. Оценка потребительских предпочтений

 

Рассмотрим случай квазиравномерного потока в длинном канале с прямоугольным сечением и заданным расходом воды (рис. 3).

 

 

Рис. 3. Схема квазиравномерного потока в длинном канале (а) и кривые Q = f (z) (б) при разных значениях коэффициента гидравлического сопротивления l (Q 3> Q 2> Q 1; l3>l2>l1). Кривые свободной поверхности приведены при Q 1 и Q 3 лишь при одном значении l2.

 

Пусть будут заданы постоянные ширина русла В и постоянный уклон дна i o. Расход воды задается ступенчатым графиком. Течение в канале принимается квазиравномерным, поэтому уклон водной поверхности постоянный, причем I = i o.

При рассматриваемых условиях неизвестными характеристиками при любом расходе воды Q оказываются глубина русла Н и скорость течения V. Для их определения составим систему уравнений с двумя неизвестными:

Первое из них было рассмотрено ранее (см. (1.4)), второе – отражает условие неразрывности. Выразим V из второго уравнения через Q / BH и подставим в первое. В результате получим

, (1.7а)

откуда найдем глубину:

. (1.7б)

Уравнение (1.7б) показывает, что при неизменных B, I и l глубина (и уровень воды) в канале растут с увеличением расхода воды согласно зависимости H ~ Q 2/3.

Это соотношение является аналитическим выражением для кривой расходов z = f (Q) и отражает нелинейный характер увеличения Hz) с ростом Q.

Уравнение (1.7) одновременно показывает, что изменение гидравлического сопротивления (и характеризующего его коэффициента l) ведет к изменению глубины (и уровня воды) даже при неизменном расходе воды. Связь здесь прямая: чем больше l или 2 g / c 2, тем большая глубина требуется в русле, чтобы пропустить этот же расход воды. Это отражается в повышении кривой Q = f (z) и уровней воды при увеличении гидравлического сопротивления (рис.3.б).

Среднюю скорость течения можно определить по формулам V = Q / BH или , подставив в них значение Н из (1.7). Результат будет один и тот же:

. (1.8)

Эта формула отражает закономерное увеличение скорости течения с ростом расхода воды в канале и зависимость скорости течения от коэффициента гидравлического сопротивления (с увеличением l или 2 g / c 2 скорость течения нелинейно уменьшается даже при неизменном расходе воды).

Таким образом, уравнения (1.7) и (1.8) отражают очень важную закономерность: русловой поток представляет собой саморегулирующуюся систему, в которой при изменении расхода воды глубина и скорость течения устанавливаются автоматически и одновременно зависят от гидравлического сопротивления.

Изложенные выводы, полученные для условий канала с неизменной шириной русла, сохраняют свою силу и для естественного речного русла. В этом случае необходим лишь дополнительный учет связи ширины русла с расходом воды (или уровнем).

В естественных речных потоках наблюдается также такое интересное явление: поток не только зависит от гидравлического сопротивления, т.е. шероховатости своего дна, но и сам управляет этой шероховатостью, изменяя ее и изменяясь при этом сам. Возможно, это есть проявление способности речного потока сохранять свою энергию и выдерживать скорости течения в границах определенного диапазона малых величин (К. В. Гришанин, 1979, стр.7). Таким образом, речной поток и его русло представляют, возможно, наиболее совершенную из самоуправляющихся систем неорганического мира (К. В. Гришанин, 1979, стр.10).

 

 


Дата добавления: 2015-11-13; просмотров: 61 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Уравнение одномерного квазиравномерного движения руслового потока, понятие о касательном напряжении и гидравлическом сопротивлении| Гидравлического сопротивления

mybiblioteka.su - 2015-2025 год. (0.012 сек.)