Читайте также:
|
|
Измерить тесноту связи между коррелируемыми величинами – значит определить, насколько вариация результативного признака обусловлена вариацией факторного (факторных) признака. Ранее были рассмотрены показатели, с помощью которых можно выявить наличие корреляционной связи между двумя признаками x и y и измерить тесноту этой связи: коэффициент Фехнера, ранговые коэффициенты корреляции Спирмэна и Кендэла, линейный коэффициент корреляции и др.
Наряду с ними существует универсальный показатель – корреляционное отношение (или коэффициент корреляции по Пирсону), применимое ко всем случаям корреляционной зависимости независимо от формы этой связи. Следует различать эмпирическое и теоретическое корреляционное отношение. Как уже отмечалось ранее (2.9), эмпирическое корреляционное отношение рассчитывается на основе правила сложения дисперсий как корень квадратный из отношения межгрупповой дисперсии к общей дисперсии, т.е.
. (28)
Теоретическое корреляционное отношение определяется на основе выравненных (теоретических) значений результативного признака , рассчитанных по уравнению регрессии. представляет собой относительную величину, получаемую в результате сравнения среднего квадратического отклонения в ряду теоретических значений результативного признака со средним квадратическим отклонением в ряду эмпирических значений. Если обозначить дисперсию эмпирического ряда игреков через , а теоретического ряда – , то каждая из них выразится формулами
, .
Сравнивая вторую дисперсию с первой, получим теоретический коэффициент детерминации
, (29)
который показывает, какую долю в общей дисперсии результативного признака занимает дисперсия, выражающая влияние вариации фактора x на вариацию y. Извлекая корень квадратный из коэффициента детерминации, получаем теоретическое корреляционное отношение
. (30)
Оно может находиться в пределах от 0 до 1, чем ближе его значение к 1, тем теснее связь между вариацией y и x. При <0,3 говорят о малой зависимости между коррелируемыми величинами, при 0,3< <0,6 – о средней, при 0,6< <0,8 – о зависимости выше средней, при >0,8 – о большой, сильной зависимости. Корреляционное отношение применимо как для парной, так и для множественной корреляции независимо от формы связи. В этом смысле его можно назвать универсальным показателем тесноты связи. При линейной зависимости .
Покажем расчет на примере. Исходные данные и расчет дополнительных показателей приведен в следующей таблице.
В данном примере общая средняя урожайность (ц/га).
Общая дисперсия =30/5=6, факторная дисперсия =29,46/5=5,892.
Отсюда теоретическое корреляционное отношение =0,99. Данное значение характеризует очень тесную зависимость изменения урожайности от изменения количества внесенных удобрений. В нашем примере незначительные расхождения (30 29,46+0,46 – это правило сложения дисперсий) объясняются округлением значений параметров уравнения регрессии и самих .
Дата добавления: 2015-11-13; просмотров: 77 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Нахождение уравнения регрессии между двумя признаками | | | Оценка существенности коэффициента регрессии и уравнения связи |