Читайте также:
|
|
Показатели | Исходная нефть | 5 кавитационных ударов при 23ºС | 1 кавитационный удар при 2ºС |
Плотность (20ºС), г/см3 | 0,8838 | 0,8733 | 0,8730 |
Начало кипения (НК), ºС | |||
До 300ºС выкипает, об.% | 36,0 | 38,1 | 39,8 |
Выход фракций, масс.% НК - 180ºС | 13,3 | 15,9 | 16,0 |
НК - 360ºС | 43,5 | 46,7 | 46,8 |
Таким образом, впервые для механохимической активации жидких нефтепродуктов различного фракционного состава успешно использован дезинтеграционный агрегат высокого давления (экструзионный диспергатор) как в лабораторных, так и в полевых условиях. Показано, что в условиях прямоточного режима и циклической работы при температуре от 0 до 25 ºС за счет совместного воздействия сил кавитации и гидравлического трения происходит частичное разрушение структуры дисперсной системы и крекинг высококипящих компонентов сырья, приводящие к увеличению содержания легкокипящих углеводородов. Эффективность воздействия зависит от условий обработки (давления, цикличности) и степени структурированности нефтепродукта.
Как показано в работе [28], одним из перспективных направлений является применение кавитационно-вихревых аппаратов (КВА) в процессах получения битума.
На одной из действующих установок производства битума проводили промышленные испытания КВА.
В одну из колонн окисления битума были установлены кавитационно-вихревые аппараты. Сырье и воздух через распределительные устройства подавались непосредственно в аппарат для смешения, после которого газожидкостная струя попадала в пенную камеру, где происходило образование дисперсной системы пенного типа. Перфорированные трубы распределения воздуха были полностью исключены из схемы. Линия подачи сырья под уровень раздела фаз была отключена. Отвод газов окисления и готового продукта остался без изменений.
Сырье представляло собой смесь гудрона с установки АВТ и асфальта с установки деасфальтизации масел. Соотношение «гудрон: асфальт» составляло 3:1 – 4:1.
В ходе серии экспериментов по изучению изменения удельного расхода воздуха, подаваемого в колонну с аппаратом КВА, по сравнению с традиционной колонной, выявлено уменьшение удельного расхода воздуха на 30 – 40 % в колонне со встроенным КВА.
Применение кавитационно-вихревого аппарата, предназначенного для увеличения пощади контакта газовой и жидкостной фаз, позволило интенсифицировать процесс окисления битума, что выразилось в повышении температуры размягчения готового продукта по КиШ на 4 – 5 градусов, увеличении производительности колонны на 20 – 25% и уменьшении удельного расхода воздуха на 0,5 – 1 м3/(м2•мин) по сравнению с традиционной технологической схемой. Кроме того, понизилось остаточное содержание кислорода в газах окисления на 1,5 – 2 %, что свидетельствует о повышении степени использования кислорода воздуха при применении КВА.
Анализ и сопоставление информации, приведенной в [1 и 11] выявляет ее недостаточность в [11], что не позволяет судить обо всех факторах воздействия на тяжелое нефтяное сырье в аппарате с вихревым слоем. Отсутствуют данные о параметрах магнитного поля, размерах, материале и количестве ферромагнитных частиц, влиянии продолжительности воздействия на структуру и свойства остаточных компонентов газоконденсата. В то же время относительно высокие температуры не позволяют сделать вывод о вкладе собственно магнитного поля в зафиксированные изменения структуры и свойств сырья.
Для достижения цели работы, сформулированной на стр. 4, необходимо решить следующие задачи – установить характеристики магнитного поля в используемом нами аппарате с вихревым слоем периодического действия, выявить влияние продолжительности механоактивации на изменение, в первую очередь, фракционного состава тяжелого нефтяного сырья с различным содержанием ПМЦ при постоянной температуре (ниже 100°С).
Дата добавления: 2015-11-16; просмотров: 94 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Энергия разрыва связи для некоторых типов соединений. | | | Статистическая обработка результатов разгонки. |