Читайте также:
|
|
Химическая природа и состав нефти, нефтяных фракций и остатков предопределяют весь комплекс их физико-химических свойств и коллоидно-дисперсное строение нефтяных систем.
Общим свойством пространственно-структурированных систем является сопротивляемость деформации и разрушению под действием внешней механической нагрузки. При достижении определенного значения механической нагрузки (предельного напряжения сдвига) структура разрушается. Проявлением этого эффекта является изменение вязкости и плотности системы.
К перспективным направлениям в создании нетрадиционных технологий и интенсификации существующих относится использование различных физических методов воздействия на нефтяное сырье. В результате такого воздействия в аппаратах различной конструкции могут реализовываться физические и химические процессы, которые в обычных условиях трудно или невозможно осуществить. Привлекательность такого рода аппаратов заключается в том, что они способны обеспечить высокую концентрацию энергии в единице объема и значительную производительность при относительно малых габаритах.
Ряд нетрадиционных методов активации жидкого сырья различной природы основан на использовании кавитации, с которой на протяжении многих десятилетий боролись как с негативным явлением. Кавитация разрушает гребные винты судов, крыльчатки насосов и помп, вызывает шум, вибрации и снижение эффективности работы гидравлического оборудования [15,16,]. Однако, очевидно, что выделяемая при кавитации в результате схлопывания пузырьков колоссальная энергия, а также большое число способов создания условий для кавитации могут с эффективностью использоваться для интенсификации многих технологических процессов.
Кавитация – образование в жидкости полостей (пузырьков), которые пульсируют, осцилируют, растут, уменьшаются, схлопываются и при этом перемещаются вместе с потоком жидкости.
К одному из первых сообщений о возможности применения кавитации для интенсификации крекинга нефтяного сырья можно, вероятно, отнести доклад, сделанный в 1960 г. на Всесоюзной научно-технической конференции по применению ультразвука в промышленности [17]. В докладе приведены результаты исследований влияния ультразвуковых колебаний на процесс легкого крекинга тяжелых нефтяных остатков при повышенном давлении. Термокрекинг проводили на лабораторной установке непрерывного действия при температуре 430-470°С и давлении 20-60МПа. Для создания ультразвуковых колебаний на входе в трубчатую печь были установлены магнитострикционные излучатели. Резонансная частота колебаний составляла 27 кГц.
В результате исследований были выявлены определенные условия наиболее эффективного действия ультразвука: температура 450°С, давление 50МПа. При этих условиях по сравнению с условиями обычного термического разложения увеличивается выход продуктов реакции: газа – в 1,3 раза, бензиновой фракции – в 1,6 раза, фракций до 350°С – в 1,6 раза.
В общем случае явление кавитации связывают с появлением в жидкости при определенных условиях многочисленных кавитационных пузырьков, которые пульсируют, осциллируют, растут, уменьшаются, схлопываются и при этом перемещаются вместе с потоком жидкости.
Необходимыми и достаточными условиями возникновения кавитационных пузырьков являются наличие в жидкости зародышей пузырьков и статического давления ниже давления насыщенных паров этой жидкости при данной температуре, так как в реальной жидкости плотность сверхкритических зародышей достаточно высока. Способ понижения статического давления принципиального значения не имеет [18, 19].
Достичь статического давления ниже давления насыщенных паров можно наложением на среду акустических волн [20-25], а также гидродинамическим путем, увеличивая скорость жидкости за счет уменьшения площади живого сечения ее потока (трубка Вентури, центробежные вихревые камеры и т.д.). Опыты по созданию гидродинамической кавитации в центробежной вихревой камере с целью воздействия на поток мазута показали: существование кавитации в окрестности вихря, стадии схлопывания пузырьков, а также понижение технологической температуры крекинга мазута.
При схлопывании пузырька в результате несферического сжатия возникают кумулятивные струйки, а в окрестности места исчезновения пузырька выделяется энергия. При этом в точке схлопывания пузырька температура может достигать 104 К, а давление – 200-400МПа.
Энергия разрыва (Есв) некоторых химических связей [26] для одного моля некоторых типов соединений приведена в табл.8. Как видно, для разрыва связи типа С-С в одной молекуле, например парафиновых углеводородов, необходимо потратить энергию:
, (16)
где NA – число Авогадро.
Таким образом, число N молекул, в которых может быть разорвана связь при схлопывании одного кавитационного пузырька, составит:
, (17)
где - энергия, выделяющаяся при схлопывании одного кавитационного пузырька.
Это говорит о возможности крекинга углеводородов нефти путем гидродинамической кавитации. Для увеличения выхода продуктов крекинга необходимо, чтобы конструкция кавитационного аппарата обеспечивала многоцикловость кавитационного процесса и создание в потоке нефтепродукта кавитационных пузырьков максимальной плотности.
Таблица 8.
Дата добавления: 2015-11-16; просмотров: 82 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Особенности аппаратов с вихревым слоем | | | Энергия разрыва связи для некоторых типов соединений. |