Читайте также: |
|
На диаграмме «время – расстояние от центра» при сжатии звезды пути световых лучей с ее поверхности будут идти под все меньшим и меньшим углом к вертикали. Когда звезда достигнет некоторого критического радиуса, их путь на диаграмме станет вертикальным, а это означает, что свет будет висеть на постоянном расстоянии от центра звезды, никогда не покидая ее. Этот критический путь света очерчивает поверхность, называемую горизонтом событий, которая отделяет область пространства-времени, откуда свет может выйти, от той, откуда он выйти не может.
Горизонт, внешняя граница черной дыры, образован световыми лучами, которые были на грани ухода от черной дыры, но уже не смогли вырваться и «зависли» на постоянном расстоянии от центра.
Любой свет, испускаемый звездой после пересечения ею горизонта событий, будет завернут обратно за счет искривления пространства-времени. Она станет одной из темных звезд Мичелла или, как мы теперь говорим, черной дырой.
Как обнаружить черную дыру, если из нее не может выйти свет? Ответ состоит в том, что черная дыра продолжает притягивать окружающие объекты с той же силой, с какой это делало сколлапсировавшее тело. Если бы Солнце без потери массы превратилось в черную дыру, планеты продолжали бы обращаться по орбитам так же, как ныне.
Поэтому один способ поиска черных дыр состоит в наблюдении вещества, которое обращается вокруг того, что представляется невидимым компактным объектом. Наблюдается целый ряд таких систем. Пожалуй, наиболее впечатляющи гигантские черные дыры, встречающиеся в центрах галактик и квазаров (рис. 4.14).
Рис. 4.14. Ч ерная дыра в центре галактики
Слева: Галактика NGC4151, снятая широкоугольной планетной камерой.
В центре: Горизонтальная линия, пересекающая изображение, порождена светом, который испущен черной дырой в центре NGC 4151.
Справа: Изображение, показывающее скорости излучающего кислорода. Все факты говорят о том, что NGC 4151 содержит черную дыру массой в 100 млн раз больше Солнца.
[Верхняя половина изображения смещена относительно нижней за счет доплеровского сдвига спектральных линий: в верхней части газ удаляется от нас, а в нижней – приближается к нам. – Перев.]
Обсуждавшиеся до сих пор свойства черных дыр не создают никаких серьезных проблем для детерминизма. Для астронавта, который падает в черную дыру и попадает в сингулярность, время заканчивается. Однако в общей теории относительности каждый волен отсчитывать время с разной скоростью в разных местах. Можно поэтому ускорять часы астронавта по мере его приближения к сингулярности, так что они по-прежнему зарегистрируют бесконечный интервал времени.[12] На той же диаграмме «время – расстояние» (рис. 4.15) поверхности постоянных значений этого нового времени все плотнее располагались бы у центра под той точкой, где появляется сингулярность. Но они согласовывались бы с обычными отсчетами времени в почти плоском пространстве вдали от черной дыры.
Рис. 4.15
Астронавт опустился на поверхность коллапсирую-щей звезды в 11:59:57 и вместе со звездой сжимается ниже критического радиуса, за которым гравитация столь сильна, что никакой сигнал не может оттуда выйти. На корабль, который обращается вокруг звезды, он посылает сигналы с регулярными интервалами по своим часам.
Наблюдающий за звездой с расстояния никогда не увидит, что она пересекла свой гравитационный радиус и вошла в черную дыру. Для него все будет выглядеть так, будто звезда зависла над самым критическим радиусом, а часы на ее поверхности замедлили свой ход и остановились.
Дата добавления: 2015-10-21; просмотров: 64 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ДЖОН УИЛЕР | | | ТЕМПЕРАТУРА ЧЕРНОЙ ДЫРЫ |