Читайте также: |
|
Начало развития генетики связано с деятельностью чешского естествоиспытателя Г. Менделя, который в 1865 г. провел ряд опытов по скрещиванию гороха. Результаты его опытов позволили сделать вывод о том, что наследственные признаки растений обеспечиваются дискретными частицам. Современная наука назвала эти частицы генами.
Мендель намного опередил своими открытиями общественное сознание. Его научные выводы привлекли внимание нового поколения ученых в 1900 г., когда Х. де Фриз, К. Корренс, Э. Чермак провели дополнительные экспериментальные исследования и подтвердили предположения Г. Менделя.
В 1906 г. У. Бетсон назвал науку о наследственности «генетикой». Несколько позже датский ученый В. Иогансен ввел понятие гена как элементарной единицы наследственности.
Генетика (от греческого genetikos – «происхождение») – это наука о законах наследственности и изменчивости. Практически весь XX век прошел в поисках основных закономерностей развития живого мира. Предполагается, что XXI век станет веком глобальных генетических исследований и достижений, которые существенным образом отразятся на развитии цивилизации.
Наследственность следует понимать, как способность всех родительских особей передавать свои признаки потомству, что обеспечивает сохранение определенных свойств в пределах данного вида на протяжении огромного числа поколений. Кроме наследственности живым организмам присуще свойство изменчивости, которое проявляется в изменении фенотипических и генотипических признаков вида.
Достижения современной генетики обусловлены развитием техники и технологий исследования, возможностями химической и физической наук. В настоящее время самостоятельное значение имеют молекулярная генетика, иммуногенетика, медицинская генетика, генетика поведения, геногеография и другие отрасли биологии.
Ген с точки зрения современной генетики – это участок молекулы дезоксирибонуклеиновой кислоты (ДНК), который определяет возможность развития одного признака или синтеза белковой молекулы. Различают следующие виды генов: доминантные, рецессивные, аллельные. Доминантные гены – это гены, проявляющиеся у гибридов и подавляющие развитие одного признака. Рецессивные гены подавляются доминантными и не проявляются у гибридов первого поколения. Аллельные гены отвечают за развитие одного признака.
Совокупность всех генов одного организма называют его генотипом. В отличие от генотипа фенотип – это совокупность всех признаков одного организма, сформировавшаяся в процессе его индивидуального развития. В состав фенотипических признаков входят биохимические, анатомические и внешние признаки.
Совокупность генов у особей одного вида образует генофонд. Формирование и сохранение генофонда является важнейшей проблемой биологии.
Современная генетика утверждает следующие положения:
- наследственность является дискретным, жизненно важным свойством всех живых организмов, которое обусловлено наличием генов, расположенных в хромосомах; наследственность обеспечивает характер индивидуального развития организма в определенной среде;
- многообразие жизненных форм и их эволюция объясняется наследственной изменчивостью;
- индивидуальное развитие организма осуществляется на основе биохимических процессов, которые наследственно запрограммированы в геноме;
- наследственная информация содержится в хромосомах, составляющих структуру клеточных ядер.
Важным этапом развития генетики стала в начале XX века хромосомная теория наследственности, которую сформулировал американский ученый Т.Х. Морган. В основе хромосомной теории наследственности лежат следующие утверждения:
-гены располагаются в хромосомах в линейном порядке в строгой последовательности (каждый ген занимает свой локус (место) в хромосоме;
- в гомологичных (похожих) хромосомах аллельные гены занимают один и тот же локус;
- удвоение хромосом приводит к удвоению генов;
- гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления;
- число групп сцепления соответствует гаплоидному (одинарному) набору хромосом и постоянно для каждого вида живых организмов;
- причиной нарушения сцепленного наследования является кроссинговер – взаимный обмен участками парных хромосом;
- гены относительно стабильны, но под влиянием факторов внешней среды могут мутировать.
Хромосо́мы (греч. χρώμα – цвет и греч. σώμα – тело) – хорошо окрашиваемые включения в ядре эукариотической клетки, которые становятся легко заметными в определенных фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия все чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.
Хромосомы эукариот имеют сложное строение. Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо нее, в состав хромосомы входят пять специализированных белков – H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.
Наследственная информация кодируется в молекуле ДНК благодаря сочетанию трех нуклеотидов – триплетов. Каждый триплет соответствует одной аминокислоте в синтезируемом белке, который отвечает за развитие определенного признака. Большое значение в передаче генетической информации играют разные типы рибонуклеиновой кислоты (РНК): транспортная, рибосомная и информационная.
Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин – А, тимин – Т, гуанин – Г или цитозин – Ц), а также углевод дезоксирибоза и остаток фосфорной кислоты. В РНК Тимин замещается уроцилом.
Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.
Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.
Для ДНК характерна структура трех видов – первичная, вторичная и третичная. Первичная структура ДНК заключается в том, что состоит из нуклеотидных цепей, у которых скелетную основу составляют чередующиеся сахарные и фосфатные группы, объединенные ковалентными связями.
Представление о вторичной структуре ДНК было сформулировано Д. Уотсоном и Ф. Криком в 1956 г. Они использовали данные об Х – дифракции молекул ДНК, структуре оснований и правила А. Чаргаффа, что позволило сформулировать следующие положения:
Молекула ДНК построена из двух скрученных направо спиралевидных полинуклеотидных цепей, причем каждый виток спирали соответствует 10 азотистым основаниям или расстоянию в 3,4 нм.
Обе цепи объединены в результате закручивания одной цепи вокруг другой по общей оси.
Сахарофосфатные группы располагаются на внешней стороне двойной спирали, а основания находятся практически внутри спирали под прямым углом и вдоль ее оси. Диаметр молекулы составляет 2 нм, расстояние между отдельными азотистыми основаниями в молекуле равны 0,34 нм. Таким образом, молекула ДНК – это скрученная в правостороннем направлении двойную спираль, в которых пары азотистых оснований А-Т и Г-Ц в комплементарных полинуклеотидных цепях подобны перекладинам в лестнице, а сахарофосфатные цепи служат каркасом лестницы.
Цепи в молекуле не идентичны, но комплиментарны и удерживаются слабыми водородными связями между азотистыми основаниями.
Третичная структура ДНК связана с трехмерной пространственной конфигурацией молекул и зависит от внутримолекулярных условий. Данная структура активно исследуется современной генетикой.
Джеймс Уотсон и Фрэнсис Крик не только постулировали структуру ДНК, но и объяснили, каким образом может передаваться генетическая информация. Это происходит в три этапа:
- репликация (копирование родительской ДНК с образованием дочерних ДНК);
- транскрипция (переписывание генетической информации в форме РНК);
- трансляция (перевод информации с РНК на белковую форму).
Роль ДНК как носителя генетической информации подтверждается опытными фактами. Так, Освальдом Эвери, Колином Мак-Леодом и Маклином Мак-Карти было показано, что ДНК, выделенная из одного штамма бактерий, способна перейти в клетки другого штамма и трансформировать их, передавая некоторые наследственные признаки донора.
Ряд вирусов имеет одноцепочечную молекулу ДНК, но у большинства ДНК-содержащих вирусов ДНК двухцепочечная, и она линейна или замкнута в кольцо. В клеточных организмах ДНК содержится в хромосомах. Бактериальная хромосома содержит гораздо большую по размерам молекулу ДНК, также свернутую в кольцо. Эти кольца сверхспирализированы: двойная спираль, прежде чем ее концы были соединены, была частично раскручена. Такой эффект позволяет молекуле разместиться более компактно.
Рис. 12.1. Строение хромосомы. |
Хромосомы эукариот представляют собой линейную молекулу ДНК. Эукариотическая ДНК обматывает белковые частицы – гистоны, располагающиеся вдоль ДНК через определенные интервалы, образуя хроматин – волокна, из которых состоят хромосомы. Комплексы участков ДНК и гистонов называются нуклеосомами. Нуклеосомы упорядочены в пространстве, за счет чего достигается плотная упаковка ДНК в хромосоме (рис.12.1.).
Размеры ДНК зависят от типа организма. Физическая длина ДНК вирусов составляет десятки микрометров, бактерий – миллиметры, а человека – 2 метра. Общая длина всех ДНК человека составляет 2 1010 км.
Наследственность как свойство живой материи тесным образом взаимосвязано с противоположным свойством – изменчивостью. Изменчивость понимают, как способность живых организмов приобретать новые признаки.
Различают наследственную (генотипическую) и ненаследственную (модификационную) изменчивость. Наследственная изменчивость связана с изменением генотипа и сохраняется в ряду поколений. Наследственная изменчивость может иметь мутационную или комбинативную природу.
Мутационная изменчивость (мутации) представляет собой спонтанные скачкообразные изменения генетического материала. Мутации возникают вследствие нарушения в структуре генов или хромосом, они могут иметь позитивный и негативный характер для организма. В естественных условиях частота мутаций незначительна. Число мутаций может увеличиваться под влиянием ионизирующего излучения, температуры, электромагнитные поля, химические воздействия и других мутагенных факторов.
Мутации повышают генетическое разнообразие внутри популяции или вида, поставляя материала для естественного отбора и образования новых видов. Положительные мутации явление крайне редкое, но оно лежит в основе эволюционного процесса.
Комбинативная изменчивость связана с перестройкой структуры хромосом и рекомбинацией генов. Сами гены при этом не изменяются.
Ненаследственная изменчивость возникает под влиянием определенных факторов внешней среды. Наследственная изменчивость характеризуется групповыми формами изменений; соответствием возникающих изменений определенным факторам среды; максимальными ограничениями изменений.
Дата добавления: 2015-10-21; просмотров: 429 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Традиционный, физико-химический, эволюционный и биоинженерный периоды развития биологии. Основные достижения биологии в эти периоды | | | Синергетическая теория эволюции (глобальная эволюция) |