Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Предельная ошибка выборки

Читайте также:
  1. Quot;Уупс!" — это не ошибка
  2. А теперь об обычных ошибках, которые допускают женщины
  3. Бариста должен не только сварить эспрессо, но и суметь оценить результат, чтобы при необходимости провести работу над ошибками
  4. В ЧЕМ КРОЕТСЯ ОШИБКА
  5. ВИПАРЙАСА(санскр.) Неправильное представление, ошибка. Одна из пяти функций буддхи. См. Буддхи.
  6. Глава 29 Большая ошибка Нарциссы Малфой
  7. Глава 3. Сначала говорите о своих собственных ошибках

Учитывая, что на основе выборочного обследования нельзя точно оценить обобщающую характеристику ГС, необходимо найти пределы, в которых он находится. В конкретной выборке разность может быть больше, меньше или равна . Каждое из отклонений от имеет определенную вероятность. При выборочном обследовании реальное значение в ГС неизвестно. Зная среднюю ошибку выборки, с определенной вероятностью можно оценить отклонение выборочной средней от генеральной и установить пределы, в которых находится изучаемый параметр (в данном случае среднее значение) в генеральной совокупности. Отклонение выборочной характеристики от генеральной называется предельной ошибкой выборки . Она определяется в долях средней ошибки с заданной вероятностью, т.е.

= t , (41)

где tкоэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.

Вероятность появления определенной ошибки выборки находят с помощью теорем теории вероятностей. Согласно теореме Чебышёва, при достаточно большом объеме выборки и ограниченной дисперсии генеральной ГС вероятность того, что разность между выборочной средней и генеральной средней будет сколь угодно мала, близка к единице:

при . (42)

А. М. Ляпунов доказал, что независимо от характера распределения генеральной ГС при увеличении объема выборки распределение вероятностей появления того или иного значения выборочной средней приближается к нормальному распределению (центральная предельная теорема). Следовательно, вероятность отклонения выборочной средней от генеральной средней, т.е. вероятность появления заданной предельной ошибки, также подчиняется указанному закону и может быть найдена как функция от t с помощью интеграла вероятностей Лапласа:

, (43)

где – нормированное отклонение выборочной средней от генеральной средней.

Значения P (интеграла Лапласа) для разных t рассчитаны и име­ются в специальной таблице, которая приведена в Приложении 1.

Вероятность, которая принимается при расчете выборочной характеристики, называется доверительной. Чаще всего принимают вероятность P = 0,950, которая означает, что только в 5 случаях из 100 ошибка может выйти за установленные границы. Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения t по Приложению 1 и рассчитывают предельную ошибку выбор­ки по формуле (41).

После расчета предельной ошибки находят доверительный интервал обобщающей характеристики ГС совокупности по формуле (44) – для среднего значения, и по формуле (45) – для доли единиц, обладающих каким-либо значением признака:

или () ( + )(44)

или () d ( + ) (45)

Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики ГС, а лишь ее доверительный интервал с заданным уровнем вероятно­сти. И это серьезный недостаток выборочного метода статистики.


Дата добавления: 2015-10-16; просмотров: 104 | Нарушение авторских прав


Читайте в этой же книге: Понятие о статистике | Абсолютные величины | Относительные величины | Контрольные задания | Виды средних величин | Статистическое изучение вариации | Методические указания | Показатели изменения уровней ряда динамики | Средние показатели ряда динамики | Методы выявления основной тенденции (тренда) в рядах динамики |
<== предыдущая страница | следующая страница ==>
Средняя ошибка выборки| Необходимая численность выборки

mybiblioteka.su - 2015-2024 год. (0.006 сек.)