Читайте также: |
|
Общие, единичные, пустые понятия. Объемы понятий могут быть разными. Прежде всего, нельзя путать понятия общие и единичные; их различие в логических свойствах не допускает одинакового обращения с ними при выполнении операций. В целом ряде случаев для них действуют разные правила. Общие понятия охватывают много предметов. Причем "много", как и множественное число в грамматике, начинается с двух. Иными словами, даже если в объеме только два явления или две вещи, то этого достаточно, чтобы охватывающее их понятие считать общим. Так, "полюс Земли" представляет собой общее понятие, хотя полюсов всего два - северный и южный. Тем более общими являются понятия "книга", "ракета", "морское млекопитающее" - в объеме каждого из них далеко не один предмет. Самая примечательная черта этих понятий состоит в следующем: то, что сказывается об общем, то одновременно может сказываться о каждом элементе из объема. Прежде всего, для науки важны общие понятия; все научные основоположения формулируются с их помощью. Единичные понятия, в отличие от общих, охватывают только один предмет. Таковы "Атлантический океан", "атомный ледокол "Ленин", "Эйфелева башня", "Царь-пушка". В логике рассматриваются также пустые понятия. Они имеют нулевой объем: "вечный двигатель", "Баба-Яга", "четыре, умноженное на сонату Бетховена", "повышение продуктивности сельского хозяйства в России в результате фермеризации".
Взаимоотношение понятий по объему удобно отображать графически. Для этого разработано несколько способов. Наиболее употребительный - круги Эйлера (рис. 1). Возьмем такую совокупность понятий: 1)"дорога", 2)"мост", 3) "железнодорожный путь", 4)"шпала", 5)"рельс", 6)"узкоколейка", 7)"виадук". Их изображение кругами представлено на рисунке. Железнодорожный путь (понятие 3) является разновидностью дороги (понятие 1) и поэтому весь объем понятия 3 полностью входит в объем понятия 1; в свою очередь узкоколейка (понятие 6) - разновидность железной дороги, значит, понятие 6 полностью входит в понятие 3. Остальные из упомянутых предметов представляют собой конструктивные элементы дорог, их составные части, но не могут рассматриваться как их разновидности. Все они находятся вне кругов 1, 3, 6. Но виадук, как известно, относится к мостовым сооружениям. Это значит то, что входит в понятие виадука, является одновременно и мостом, поэтому круг для "виадука" полностью помещается внутри круга для "моста". Можно сказать и так: совокупность понятий 1-3-6 и понятий 2-7 образуют две линии ограничения.
Собирательные и разделительные понятия. Собирательные понятия в отличие от разделительных характеризуют совокупности предметов и вещей со стороны преобладающих в них свойств. Такие свойства, являясь типичными для всего множества, не являются, однако обязательными для каждого предмета в отдельности. Так, называя рощу березовой, мы вовсе не предполагаем, что каждое дерево в ней - береза и никаких иных деревьев там нет. Собирательные понятия потому и надо отличать от обычных разделительных, что с собирательными понятиями невозможно совершать логические операции, так как общие высказывания о них не позволяют делать выводы о каждом из отдельных предметов, входящих в их объем. Если нам, к примеру, говорят: избиратели проголосовали за такого-то кандидата в депутаты, то само собой ясно, что отсюда нельзя делать вывод, будто за него голосовали все. Стало быть, здесь слово "избиратели" употреблено в собирательном смысле. В другом случае то же самое слово может иметь разделительный смысл, скажем, в высказывании: "Избиратели - граждане совершеннолетнего возраста". В обыденной речи и в художественной литературе могут не обращать внимание на отмеченную разницу в смысле понятий. Для логики же она существенно важна. Только у разделительных понятий то, что говорится об общем, относится к каждому в отдельности. Приложение же логических законов к разделительным понятиям и осуществление логических преобразований над ними имеют значительные ограничения.
Соотносительные и несоотносительные понятия. Существует целая группа примечательных в теоретическом отношении явлений и предметов, а также обозначающих их понятий, которые мыслятся только парами; на их логическое своеобразие в свое время указал немецкий философ Гегель. Причина - следствие, учитель - ученик, раб - господин, восход - закат. Одно не бывает без другого. Учитель, у которого нет и не было учеников, никак не может считаться учителем; равным образом и учеников без учителя не бывает. Так же нерасторжимо связаны и другие пары. Конечно, можно отвлечься от того, что у причины есть следствия, но тогда она не причина, а просто событие. И отец может, разумеется, существовать и вне соотношения с сыном, но тогда он не отец, а мужчина вообще. Большинство понятий являются несоотносительными; для раскрытия их содержания не требуется привлекать какие-то сопряженные с ними, в некотором смысле противоположные им понятия.
Философия может указать немало трудных проблем, связанных с соотносительностью. Например, добро и зло - можно ли их считать соотносительными или нет? Есть много оснований считать, что добро осуществляется как преодоление зла, и если бы не было второго, то и первое не имело бы смысла, во всяком случае, мы бы просто перестали его замечать. Однако, если мы с этим согласимся, то трудно будет отделаться от циничного оправдания всякого рода злодейства, каковое в таком случае становится необходимым условием проявления доброты. Ведь эдак можно договориться до того, что фашизм, начав войну на порабощение всего мира, доставил тем самым нашему народу повод прославиться на веки вечные в качестве спасителя цивилизации.
Как в действительности связаны названные понятия, является вопросом, решение которого не может быть получено в логике. Здесь просто указывается на наличие проблемы.
Абстрактные и конкретные понятия. Всякое понятие, строго говоря, обязательно является абстрактным в том смысле, что оно оставляет в себе только наиболее важные с какой-либо точки зрения признаки и отбрасывает все остальные (абстрагируется от них). Однако собственно абстрактными принято называть такие понятия, в содержание которых входит какое-нибудь свойство или действие, - белизна, возбудимость, демократичность, светимость. Выпадают из рассмотрения в этом случае сами вещи, являющиеся возможными носителями данных свойств (абстрагируются, следовательно, от самих предметов). Такие понятия противопоставляются конкретным, которые, наоборот, отображают предметы и явления сами по себе. "Стол", "небо", "экватор", очевидно, относятся к понятиям конкретным, в то время как "храбрость", "стоимость", "доступность", "новизна" - к абстрактным.
Иногда не так просто отнести то или иное понятие к первой или второй разновидности. Больше всего это характерно для философских понятий, скажем, таких как: "бесконечность", "случайность", "свобода". Представляет ли собой то, что образует их содержание, какое-то самостоятельное образование или же каждое из них есть всего лишь состояние либо характеристика состояния, например человека, материального мира и т.п.? Однозначный ответ на такой вопрос трудно дать. В целом ряде случаев поэтому, относя то или иное понятие к разряду абстрактных или конкретных, надо пояснять, по какой причине выбирается именно данный вариант.
Регистрирующие и нерегистрирующие понятия. Разделение понятий на эти два вида вызвано развитием математической логики и компьютеризацией. Здесь речь идет о возможности хотя бы в принципе пересчитать предметы, входящие в объем соответствующего понятия. В зависимости от этого меняются свойства программ и алгоритмов, с помощью которых эти объемы обрабатываются. Если охваченные понятием предметы можно пересчитать или хотя бы указать способ их пересчета, то понятие является регистрирующим. Если же пересчет невозможен, то тогда оно нерегистрирующее. В одних случаях разделение на эти разновидности очевидно: "звезда", "осенний желтый лист", "книга", "война" относятся к нерегистрирующим понятиям, "персонаж рассказа Чехова "Злоумышленник", "сыновья Владимира Мономаха", "герой Советского Союза", "здание на Крещатике в Киеве" - к регистрирующим. В других случаях определить данную характеристику понятия труднее. Что, например, входит в объем понятия "закат"? Учитывая, что Земля вращается непрерывно и поэтому в каждый момент где-нибудь можно видеть заход Солнца, мы не в состоянии даже указать, сколько закатов бывает за одни сутки. Но если отнести это понятие к какому-нибудь конкретному месту, то тогда за год их бывает 365, а общее число не превышает количество лет существования нашей планеты, умноженное на 365.
В общем и целом надо помнить, что отнесение понятий к тому или иному виду должно начинаться с определения его содержания. Пока оно не задано, говорить и тем более спорить о его характеристиках бессмысленно.
Дата добавления: 2015-09-06; просмотров: 134 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Глава 2. (2) Понятие | | | Типы отношений между понятиями |