|
Свободные радикалы - это молекулярные частицы, имеющие непарный электрон на внешней электронной оболочке и обладающие высокой реакционной способностью. Их изучение ведется методом ЭПР (спиновые ловушки), хемилюминесценции и путем применения ингибиторов реакций, в которых участвуют радикалы определенного типа. Основные радикалы, образующиеся в клетках - это радикалы кислорода (супероксид и гидроксильный радикал), монооксид азота, радикалы ненасыщенных жирных кислот, радикалы, образующиеся в окислительно-восстановительных реакциях (например, убихинол). Радикалы образуются также при действии ультрафиолетовых лучей и в ходе метаболизма некоторых чужеродных соединений (ксенобиотиков), в том числе некоторых препаратов, одно время применявшихся в качестве лекарств.
активная форма кислор
Супероксид-анион (радикал)
Ключевой активной формой кислорода является супероксид анион - радикал (О2-), образующейся при присоединении одного электрона к молекуле кислорода в основном состоянии. Супероксид радикал сам по себе обладает малой реакционной способностью. Он может действовать как окислитель (акцептор электрона), как восстановитель (донор эелектрона). В водной среде может спонтанно дисмутировать (один атом может выступать в качестве акцептора эелектрона, а другой в качестве донора).
Время его жизни в биологических субстратах составляет около 10-6 с. Супероксид анион-радикал представляет опасность тем, что способен повреждать белки, содержащие железо-серные кластеры, такие как аконитаза, сукцинатдегидрогеназа и НАДН-убихинон оксидоредуктаза.
При кислых значениях рН супероксид анион-радикал может протонироваться с образованием более реакционноспособного пероксильного радикала (НО2.), представляющего собой слабую кислоту
H2O2 (перекись водорода)
Присоединение двух электронов к молекуле кислорода или одного электрона к супероксид-аниону приводит к образованию перекиси водорода, которая является окислителем умеренной силы. Однако из перекиси водорода может образовываться гидроксид-радикал (ОН.), который является весьма сильным окислителем. ОН радикал может образовываться при трехэлектронном восстановлении кислорода или при взаимодействии перекиси водорода с супероксид радикал - анионом - реакция Габера-Вейса. В процессе реакции генерируется OH (гидроксил-радикал) из H2O2 (пероксида водорода) и супероксида (O2−). Реакция может возникать в клетке и вызывать окислительный стресс. Реакция проходит довольно медленно, однако катализируется ионами железа. Первая стадия каталитического цикла включает восстановление Fe3+:
+ + O2− → Fe2+ + O2
Вторая стадия:
Fe2+ + H2O2 → Fe3+ + OH− + OH
Возникновение цепи:
− + H2O2 → OH + HO− + O2
В обычных условиях эта реакция протекает достаточно слабо. Токсичность перекиси водорода резко возрастает в присутствии металлов переменной валентности, что объясняется ускорением образования ОН. (Halliwell and Gutteridge)
OH (гидроксил, гидроксид - радикалы.)
Гидроксид-радикал практически не участвует в образовании других АФК, но является важным фактором окислительной модификации многих клеточных структур. Он может окислять молекулы белков и липидов, особенно активно атакуя мембранные липиды, которые содержат ненасыщенные двойные связи. Этот процесс приводит к образованию липидных гидроперекисей и изменению свойств клеточных мембран. Гидроксид-радикал вызывает разрыв связей в молекуле ДНК, что может вызывать глубокие повреждения генетического аппарата клеток. Константы скоростей его взаимодействия с большинством биологически важных молекул близки к диффузионным.
Вследствие высокой химической активности гидроксид-радикала, время его жизни в клетке составляет 100 нс, а расстояние, которое он может пройти от места образования до места взаимодействия с мишенью ~100 нм.
Гипохлорит-анион
Гипохлорит-анион (OCl-), представляющий собой активную форму хлора и условно относимый к АФК, так как он обладает сходными свойствами окислителя. В ходе миелопероксидазной реакции Н2О2 ферментативно превращается в гипохлорит-анион, который является мощным окислителем. Гипохлорит - анион опасен сам по себе, а также может взаимодействовать с О2. - с образованием гидроксид-радикала и с перекисью водорода с образованием синглетного кислорода.
радикал
К радикальным компонентам клетки относится NO-радикал, образуемый ферментом NO-синтаза и участвующий в образовании пероксинитрита при взаимодействии с супероксид.
Механизмы возникновения АФК
Молекулярный кислород в основном своем триплетном состоянии имеет два неспаренный электрона с одинаково ориентированными спинами, занимающих самостоятельные внешние орбитали. Каждая из этих орбиталей может принять ещё один электрон. Полное восстановление О2 в Н2О требует присоединения четырех электронов. В большинстве случаев в организме восстановление кислорода происходит поэтапно, с переносом одного электрона на каждом этапе.
При присоединении первого электрона образуется супероксидный анион 2О-, который имеет на внешней орбитали неспаренный электрон. Такие атомы называются свободными радикалами. Супероксид, получая ещё одни электрон превращается в пероксид водорода Н2О2, присоединение третьего приводит к образованию молекулы воды и гидроксильного радикал ОН. Четвертый электрон превращает гидроксил в воду.
Таков нормальный механизм обезвреживания кислорода, общий для всех процессов в организме. Но по некоторым причинам (о них речь пойдет ниже) может произойти сбой в этой системе (либо запуск определенной программы, такой как апоптоз), что приведет к нарушению присоединения электрона и как следствие появление свободный радикалов (АФК). По некоторым оценкам, даже в физиологически оптимальных условиях примерно 2-5 % проходящих по ЭТЦ электронов идут на образование супероксидных радикалов. Кроме того, в определенных условиях (например, при окислении пиридиннуклеотидов и полифенолов) при физиологическом значении рН некоторые апопластные пероксидазы, проявляя свою оксидазную функцию, способны к образованию супероксидного анион-радикала. Установлено, что пероксидаза клеточной поверхности является одним из основных источников супероксидного радикала при отсечении корней от проростков пшеницы.
Интересно сравнеие образования свободных форм кислорода у клетках растений и животных. Поскольку растения неподвижны и находятся под постоянным воздействием меняющихся условий среды, а также осуществляют оксигенный фотосинтез, в их тканях концентрация молекулярного кислорода оказывается намного более высокой, чем у других эукариот. Показано, что концентрация кислорода в митохондриях млекопитающих достигает 0,1 мкМ, в то время как в митохондриях растительных клеток - более 250 мкМ. При этом, по оценкам исследователей, примерно 1 % поглощаемого растениями кислорода преобразуется в его активные формы, что неизбежно связано с неполным пошаговым восстановлением молекулярного кислорода.
Синглетный кислород (1О2) образуется в хлоропластах в результате взаимодействия молекулярного кислорода с хлорофиллом, возбужденным квантом света и находящимся в триплетном состоянии. Энергия, необходимая для этого перехода, составляет примерно 22 ккал/моль. В результате поглощения избыточной энергии (что часто имеет место в реальных условиях) происходит обращение спина одного электрона и формирование синглетного кислорода. Образование супероксидного анион-радикала (О2-) происходит в фотосистеме I (ФС I) и II (ФС II) хлоропластов и на комплексах дыхательной цепи в митохондриях, а также в ряде реакций, протекающих в пероксисомах (при окислении ксантина ксантиноксидазой). В ФС I появление супероксидного радикала происходит в реакции Мёллера и связано с работой 4Fe-4S-кластеров, ферредоксина и/или ферредоксин-НАДФН-редуктазы. Около 10-25% всего нециклического электронного потока может идти на образование супероксид-радикала. Генерация анион-радикала, кроме того, возможна на уровне реакционного центра ФС II, предположительно в QА и QВ сайтах. В митохондриях образование О2 - сопряжено с функционированием дыхательной электрон-транспортной цепи (ЭТЦ) во внутренней митохондриальной мембране и захватом молекулярным кислородом электронов с гемов.
Существует ещё несколько механизмов возникновения свободных радикалов. Например, в процессе функционирования цитохрома Р-450 в микросомах образуется такой тип АФК как перекись водорода. Принято считать, что ее образование связано с тем, что в процессе цитохром Р-450-зависимого окислительного цикла образующийся тройственный комплекс, включающий цитохром Р-450, субстрат и ион супероксида (оксицитохром Р-450), может, помимо основного пути превращения - внедрения кислорода в структуру субстрата, - распадаться с образованием исходного комплекса субстрат-цитохром Р-450 и высвобождением супероксида (процесс "разобщения") с последующей его дисмутацией, с образованием перекиси водорода. В присутствии ионов железа перекись водорода в результате одноэлектронного переноса может восстанавливаться до гидроксил-радикала - сильнейшего окислителя. Показано также, что высвобождение железа из ферритина - белка, являющегося основным депо железа в клетке, происходит в результате образования супероксида при функционировании цитохрома Р-450
Таким образом, супероксид, образующийся при "разобщении" на цитохроме Р-450, может быть источником перекиси водорода и генератором ионов железа из ферритина-компонентов, необходимых для образования различных активных форм кислорода. Действительно, образование супероксида, перекиси водорода и гидроксил радикала показано в реконструированных ферментных системах с использованием различных изоформ цитохрома Р-450.
Кроме того АФК в организме могут образовываться и ходе реакций самопроизвольного окисления ряда веществ. Одним из важнейших примеров является окисление гемоглобина в метгемоглобин, при котором образуется супероксид. При нормальном значении ph и концентрации кислорода стабильной формой железа является Fe3+. Ион Fe2+ легко окисляется в Fe3+. Однако в молекуле гемоглобина эта реакция существенно заторможена благодаря белковой части в окружении гема. И все же с большей скоростью происходит окисление оксигемоглобина кислородом с образованием метгемоглобина.
Hb (Fe2+) O2=Hb (Fe3+) +O2-
Образующийся супероксид кислорода способен окислять оксигемоглобин.
Hb (Fe2+) O2+O2 - + 2H+= Hb (Fe3+) +O2+ H2O2
Пероксид водорода - тоже окислитель оксигемоглобина.
Hb (Fe2+) O2+H2O2= Hb (Fe3+) +OHрадикал+OH-
Гидроксильный радикал окисляет гемоглобин.
Hb (Fe2+) +OH= Hb (Fe3+)
Но тем не менее, общепринято, что дыхательная цепь митохондрий является основным источником АФК в большинстве клеток. Вместе с тем представляет интерес выяснение, какие именно компоненты дыхательной цепи и в каких условиях являются основными АФК - генераторами. Исходя из стандартных редокс-потенциалов окислительно-восстановительных центров различных Комплексов дыхательной цепи, а также на основе экспериментальных данных были выделены три основных источника АФК: НАДН - убихинон оксидоредуктаза, сукцинат-убихинон оксидоредуктаза и убихинол-цитохром с оксидо-редуктаза.
Не существует единого мнения по поводу того, в каких именно участках дыхательной цепи происходит образование АФК и каков вклад каждого из них в этот процесс. Теоретически одноэлектронное восстановление кислорода может происходить в любом из редокс-центров Комплекса I, а также в высокопотенциальных редокс-центрах Комплексов 2 и 3. По мнению большинства исследователей, основным АФК-генератором в дыхательной цепи является Комплекс I. Однако ряд авторов полагает, что Комплекс III вносит по крайней мере такой же вклад в образование АФК. Существует также мнение, что заметным источником АФК может служить также Комплекс II. На сегодняшний день признается, что все три комплекса образуют АФК.
Дата добавления: 2015-09-05; просмотров: 670 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Реферат | | | Активные формы кислорода — главный яд старения |