Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Сложные клетки

Читайте также:
  1. А. Расширение грудной клетки
  2. БЕССОЮЗНЫЕ СЛОЖНЫЕ ПРЕДЛОЖЕНИЯ
  3. Биполярные и горизонтальные клетки
  4. Волосковые клетки спирального органа (схема).
  5. Двусложные размеры стиха.
  6. ЖИВЫЕ КЛЕТКИ РАСТЕНИЙ
  7. ИЗМЕРЕНИЕ ОКРУЖНОСТИ ГРУДНОЙ КЛЕТКИ

Сложные клетки соответствуют следующему уровню (или уровням) зрительного анализа. Они наиболее многочисленны в стриарной коре и составляют здесь, вероятно, около трех четвертей всей популяции нейронов. Первая из клеток, чувствительных к ориентации стимула, исследованная Визелом и мною, — та, которая отвечала на стимул в виде края стеклянного слайда, — почти наверное была сложной клеткой.

Общим свойством сложных и простых клеток является способность реагировать только на линии, ориентированные определенным образом. Сложные клетки, так же как и простые, отвечают на стимулы, предъявляемые в ограниченном участке поля зрения. От простых они отличаются тем, что реакции их нельзя объяснить формой и распределением возбуждающих и тормозных зон в рецептивном поле. Включение или выключение небольшого неподвижного пятна в пределах рецептивного поля редко вызывает ответ клетки. Даже на надлежащим образом ориентированную неподвижную полосу или границу клетка чаще всего не реагирует или дает лишь слабый, быстро затухающий ответ одного и того же типа как при включении, так и при выключении стимула. Однако, если должным образом ориентированная линия перемещается через рецептивное поле, возникает хорошо выраженный длительный разряд импульсов. Этот разряд начинается в момент, когда линия входит в рецептивное поле, и продолжается до тех пор, пока она не выйдет за его пределы (см. рис. 41, где показана схема ответа). Напротив, для того, чтобы вызвать длительный разряд простой клетки, нужно предъявить надлежащим образом ориентированную неподвижную линию в определенном участке рецептивного поля. Если же использовать движущуюся линию, то возникает только кратковременная реакция в тот момент, когда линия пересекает границу тормозной и возбуждающей зон, или же в то время, когда линия проходит через возбуждающую зону рецептивного поля. Те сложные клетки, которые способны реагировать на неподвижные световые «щели», полоски или границы, дают импульсный разряд независимо от того, в каком месте рецептивного поля расположен стимул, лишь бы ориентация его была подходящей. Однако те же стимулы совершенно неэффективны, если их ориентация далека от оптимальной (рис. 46).

 

 

Рис. 45. Активность этой клетки из слоя 5 стриарной коры кошки была записана в 1973 году с помощью внутриклеточного электрода Д. Эссеном и Дж. Келли из Гарвардской медицинской школы. Было проведено также картирование ее сложного рецептивного поля. Затем путем инъекции красителя проционового желтого выяснили, что это была пирамидная клетка.

 

Схемы на рис. 46 (для сложной клетки) и на рис. 43 (для простой клетки) демонстрируют существенное различие между двумя типами клеток: у простой клетки реакцию вызывает оптимально ориентированная линия лишь в очень узком диапазоне положений, а у сложной такая линия вызывает ответ, в каком бы участке рецептивного поля она ни предъявлялась. Это различие связано с существованием четко очерченных возбуждающих и тормозных зон в рецептивном поле простой клетки и с отсутствием их в рецептивном поле сложной клетки. Сложная клетка дает пример генерализации (нелокальности) ответа на линию в пределах более обширной области.

В целом у сложных клеток рецептивные поля несколько больше, чем у простых, но не намного. У макака в области центральной ямки чаще всего встречаются рецептивные поля сложных клеток величиной примерно 0,5×0,5°. В этой области сетчатки оптимальные размеры стимула как для простых, так и для сложных клеток составляют около двух угловых минут. Таким образом, «разрешающая способность» сложных клеток такая же, как у простых клеток.

Как и в отношении простых клеток, мы как следует не знаем, как организована система связей, передающая сигналы сложным клеткам. Однако и здесь нетрудно предложить несколько возможных схем их организации. Согласно простейшей из таких схем, сложная клетка получает входные сигналы от множества простых клеток, рецептивные поля которых имеют одну и ту же ориентацию, но размещены, частично перекрывая друг друга, по всему полю сложной клетки, как показано на рис. 47. Если связи от простых клеток к сложным возбуждающие, то всякий раз, когда в рецептивное поле сложной клетки попадает стимул в виде линии, возбуждаются некоторые простые клетки. В результате будет возбуждаться и сложная клетка.

 

 

Рис. 46. Длинная и узкая полоса света вызывает реакцию сложной клетки независимо от того, в каком месте рецептивного поля она предъявлена, если только ее ориентация оптимальна (три верхние записи). Если ориентация полосы отличается от оптимальной, клетка реагирует слабее или не отвечает вовсе (нижняя запись).

 

 

Рис. 47. Схема связей, которая позволила бы объяснить наблюдаемые свойства сложной клетки. Мы предполагаем, что (как и на рис. 44) к одной сложной клетке могут приходить возбуждающие сигналы от большого числа простых клеток (здесь показаны только три). Каждая простая клетка наилучшим образом отвечает на вертикальную границу между светлым (слева) и темным (справа) участками. Предполагается, что рецептивные поля простых клеток разбросаны в пределах прямоугольника и перекрываются. Если стимул в виде такой границы подается в любое место прямоугольника, то некоторое число простых клеток активируется и это в свою очередь вызывает ответ сложной клетки. Из-за эффекта адаптации синапсов только движущийся стимул будет вызывать непрерывное возбуждение сложной клетки.

 

Обычно в ответ на неподвижную линию сложная клетка дает короткий импульсный разряд (даже если стимул остается включенным). В этом случае мы говорим, что происходит адаптация ответа. Если же перемещать линию в рецептивном поле сложной клетки, наблюдается непрерывный разряд: адаптация преодолевается в результате последовательного срабатывания новых простых клеток.

Читатель, должно быть, заметил, что обе приведенные схемы связей — от клеток с круглыми рецептивными полями к простым клеткам (рис. 44) и от простых клеток к сложным (рис. 47) — предполагают использование возбуждающих связей. Однако в этих двух случаях процессы возбуждения должны быть совершенно различными. В первой из этих схем требуется суммирование одновременных сигналов от клеток с круглыми рецептивными полями, лежащих на одной линии. Во второй же схеме для активации сложной клетки движущимся стимулом необходимо последовательное возбуждение множества простых клеток. Было бы интересно выяснить, с какими морфологическими различиями (если они есть) связано это различие в механизме суммации.

 

 


Дата добавления: 2015-10-13; просмотров: 118 | Нарушение авторских прав


Читайте в этой же книге: Сетчатка | Рецептивные поля ганглиозных клеток сетчатки: выход глаза | Перекрывание рецептивных полей | Размеры рецептивных полей | Фоторецепторы | Биполярные и горизонтальные клетки | Связи между биполярными и ганглиозными клетками | Значение рецептивных полей с центром и периферией | Топографическое отображение | Представительство правой и левой сторон в зрительном пути |
<== предыдущая страница | следующая страница ==>
Простые клетки| Дирекциональная избирательность

mybiblioteka.su - 2015-2024 год. (0.011 сек.)