Читайте также:
|
|
Однажды, много лет назад я сидел поздно вечером в своём офисе в Корнелльском университете, придумывая на утро экзаменационные задачи для первокурсников. Это была группа отличников, и я решил разнообразить экзамен, добавив в список задач одну посложнее. Однако было поздно, я проголодался, поэтому вместо того чтобы аккуратно подобрать сложную задачку, я взял стандартную, с которой большинство из них уже встречались, быстро изменил некоторые условия, внёс её в экзаменационные билеты и направился домой. (Опуская подробности, в задаче рассматривалось движение лестницы, прислонённой к стене, которая скользит, а потом теряет опору и падает. Я изменил стандартные условия, добавив, что плотность лестницы изменяется по длине.) На следующее утро, во время экзамена, я стал решать задачи и обнаружил, что это скромное изменение условий сделало простую задачу трудно решаемой. Решение исходной задачи вполне уместилось бы на полстраницы. А решение этой заняло все шесть. У меня крупный почерк. Но смысл вам ясен.
Этот небольшой эпизод отражает правило, нежели исключение. Задачи из учебников подобраны очень специально, чтобы их можно было полностью решить разумными усилиями за разумное время. Однако чуть-чуть измените условия, и они быстро станут либо очень сложными, либо вообще не решаемыми. Иными словами, задачи из учебника быстро становятся такими же сложными, как задачи описания реального мира.
Но факт остаётся фактом: подавляющее большинство явлений, от движения планет до взаимодействия частиц, слишком сложно для точного математического описания. Физик-теоретик должен понять, какими усложнениями в данном контексте можно пренебречь, создав при этом доступную математическую модель явления, в которой учтены все существенные детали. Рассчитывая орбиту Земли, следует учитывать только притяжение Солнца; конечно, лучше учесть ещё и притяжение Луны, но тогда математическая сложность резко возрастает. (В XIX столетии французский математик Шарль-Эжен Делоне опубликовал 900-страничную книгу, в которой подробно рассматривался гравитационный танец Солнца, Земли и Луны.) Если попытаться продвинуться дальше и полностью учесть влияние движения остальных планет, то анализ становится необозримым. К счастью, во многих приложениях можно спокойно пренебрегать всем кроме влияния Солнца, так как эффект от воздействия других тел в Солнечной системе на орбиту Земли весьма незначителен. Подобные приближения лишь подтверждают высказывание, что искусство физики лежит в умении отмести несущественное.
Физикам, много работающим с вычислениями, хорошо известно, что приближения — это не только мощный способ достижения прогресса, в них таится и определённая опасность. Минимальные усложнения при ответе на один вопрос неожиданно могут привести к весьма существенным последствиям при ответе на другой. Одна дождевая капля вряд ли сможет повлиять на вес валуна. Но если этот валун еле держится на самом краю отвесного склона, то вполне вероятно, что дождевая капля приведёт к его скатыванию, что послужит толчком для схода лавины. Приближение, не учитывающее эту дождевую каплю, приведёт к потере существенного эффекта.
В середине 1990-х годов струнные теоретики натолкнулись на подобную дождевую каплю. Они обнаружили, что различные математические приближения, широко используемые в анализе теории струн, упускают из виду некоторое важное физическое явление. Развив и применив более точные математические методы, струнные теоретики наконец-то смогли выйти за рамки этих приближений; когда это произошло, в центр внимания попали неожиданные свойства теории. Среди них оказались новые типы параллельных вселенных; кажется, что у одного из них довольно высокие шансы быть обнаруженным экспериментально.
Дата добавления: 2015-08-10; просмотров: 88 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Современный статус теории струн | | | Выход за рамки приближений |