Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Водный режим

Читайте также:
  1. FrontPage і редагування в режимі WYSIWYG
  2. V Сводный хор г. Сургута и Сургутского района
  3. XII. Требования к приему детей в дошкольные организации, режиму дня и учебным занятиям
  4. а) Режим повсякденного функціонування.
  5. Аварийные режимы работы турбины
  6. Авторитарные режимы.
  7. Аналитический расчет режимов обработки

Водный режим почвы в основном определяется количеством атмосферных осадков и испаряемостью, распределением осадков в течение года, их формой (при ливневых дождях вода не успевает проникнуть в почву, стекает в виде поверхностного стока).

Климатические условия

Климатические условия оказывают косвенное влияние и на такие факторы почвообразования, как почвообразующие породы, растительный и животный мир и др. С климатом связано распространение основных типов почв.

Рельеф

Рельеф — один из факторов перераспределения по земной поверхности тепла и воды. С изменением высоты местности меняются водный и тепловой режимы почвы. Рельефом обусловлена поясность почвенного покрова в горах. С особенностями рельефа связан характер влияния на почву грунтовых, талых и дождевых вод, миграция водорастворимых веществ.

Время

К числу факторов почвообразования относится время — необходимое условие для любого процесса в природе. Абсолютный возраст почв Восточно-европейской равнины, Западной Сибири, Северной Америки и Западной Европы, определенный радиоуглеродным методом, — от нескольких сотен до нескольких тысяч лет. Наконец, существенным фактором почвообразования, особенно в последнее время, является хозяйственная деятельность человека.

 

Механический состав почвообразующих пород и почв. Всякая почвообразующая порода как продукт выветривания первичной массивной горной породы состоит из отдельных зерен или обломков различных минералов и пород диаметром от нескольких сантиметров до микронов и миллимикронов включительно.

Точно так же и всякая почва, развивающаяся на определенной материнской породе, в минеральной своей части содержит минеральные частицы самой различной величины и формы.

Относительное (в процентах) содержание в почве или материнской породе минеральных частичек различной крупности называется механическим составом.

Механический состав оказывает непосредственное влияние на самые различные свойства почв, поэтому при исследовании и оценке почв определение их механического состава, а также механического состава почвообразующей породы имеет большое практическое значение.

Обособленные частицы пород и минералов называются механическими элементами. В зависимости от величины механические элементы (по Н. А. Качинскому) принято группировать следующим образом:

Каменистая часть почвы (> 3 мм) представляет собой обломки пород и минералов. Капиллярными свойствами и влагоемкостью практически не обладает. Водопроницаемость провальная. Высокое содержание обломков препятствует обработке почвы.

Гравий (3—1 мм) — переходные по крупности частицы пород и минералов от каменистой Части к почвенному мелкозему. Влагоемкость и капиллярные свойства ничтожно малы (влагоемкость менее 3%). Водопроницаемость провальная. Эти частицы, находясь в породе или пахотном слое, огрубляют их, но даже в случае высокого содержания не препятствуют сельскохозяйственному освоению территории.

Пески природные (1—0,05 мм)— частицы минералов, преимущественно кварца и в меньшей степени пород, обладая значительной водопроницаемостью, в то же время отличаются заметной влагоемкостью (5—15%) и капиллярными свойствами. В соответствии с этим они пригодны для выращивания культурных полевых растений и лесных насаждений, главным образом сосны.

Пыль (0,05—0,001 мм) отличается высоким содержанием кварца и некоторых других первичных минералов (полевые шпаты, слюды и др.). Частицы пыли в расчлененном состоянии не обладают положительными свойствами песка и в то же время являются «пассивной» частью при образовании почвенной структуры. Почвы, в которых преобладает средняя и мелкая пыль, обычно малоструктурны, плохо водо- и воздухопроницаемы. При пахоте бесструктурной почвы они оказывают высокое тяговое сопротивление.

Ил (< 0,001 мм) наряду с первичными минералами содержит значительное количество вторичных глинных минералов (бейделлит, монтмориллонит, каолинит, гидрослюды, галлуазит и др.)> состав которых в различных почвах разный. Богат полутораокисями железа и алюминия, а также кальцием, магнием, калием, натрием, фосфором, гумусом и микроэлементами, поэтому обусловливает запас питательных веществ в почве. Поверхностно весьма активен.

То или иное соотношение механических фракций сообщает почвам различные свойства, имеющие первостепенное значение в их плодородии.

Для определения механического состава почв необходимо знать относительное содержание в них частиц различной крупности. Для этого производят механический анализ почвы при помощи сит и путем отмучивания в воде. Ситовой метод применяют для анализа частиц>0,25 мм, механические же фракции с частицами <0,25 мм анализируют путем отмучивания в стоячей или проточной воде. Наиболее распространенным способом механического анализа почв является пипеточный метод, основанный на различной скорости падения в воде частиц различной величины.

Отдельные механические фракции в результате этого анализа собирают, высушивают, взвешивают и вычисляют процент их по отношению ко всей взятой для анализа навеске почвы.

Название почвы по механическому составу устанавливают по процентному содержанию отдельных фракций.

Подразделение, или классификацию, почв по механическому составу обычно производят на основании соотношения трех главнейших фракций: песчаной (1—0,05 мм), пылеватой (0,05—0,001 мм) и илистой (< 0,001 мм). Однако в практике чаще пользуются так называемой двучленной формулой, соотношением лишь двух фракций: физической глины и физического песка.

Наиболее распространенная в настоящее время классификация почв по механическому составу представлена в табл. 2.

Такой же принцип классификации по механическому составу положен и в основу классификации почвообразующих пород. При этом почвообразующие породы получают соответственно следующие названия: рыхлый песок, связный песок, супесь, легкий суглинок, средний суглинок, тяжелый суглинок, легкая глина, средняя глина и тяжелая глина.

Всякая почва, обладающая тем или иным механическим составом, характеризуется и определенными физическими и химическими свойствами, имеющими самую непосредственную связь с ее плодородием. При одном механическом составе почвы эти свойства будут более благоприятными, при другом — менее благоприятными. Точно же сказать, при каком механическом составе почва будет обладать наиболее благоприятными свойствами или какое соотношение отдельных механических фракций должно являться одним из критериев высокого качества почвы, пока не представляется возможным: этот вопрос до настоящего времени еще мало изучен. Поэтому ограничимся здесь лишь общими замечаниями, что лучшими в агрономическом смысле в отношении механического состава в большинстве случаев являются почвы легкосуглинистые и среднесуглинистые. Они характеризуются таким сочетанием глинистых и песчаных фракций, при котором создаются лучшие условия газообмена и водного режима почвы, обеспечивающие интенсивное развитие химических и биологических процессов.

Обладая достаточным количеством глинистых частичек, эти почвы являются вместе с тем сравнительно легкими для обработки, что также весьма ценно в производственном отношении.

Далее следует отметить группу супесчаных и затем тяжелосуглинистых почв и, наконец, песчаных и тяжелых глинистых, обладающих рядом неблагоприятных физических свойств.

При высокой агротехнике и правильном использовании почвы с любым механическим составом способны коренным образом изменять свои физические и химические свойства и становиться благоприятной средой для выращивания разнообразных культурных растений.

К сказанному необходимо добавить, что в природе нередко встречаются каменистые почвы. По каменистости почвы разделяются (по Н. А. Качинскому) следующим образом:

Тип каменистости устанавливается по характеру скелетной части почвы. Почвы могут быть валунными, галечниковыми, щебенчатыми.

Каменистость является отрицательным свойством, весьма снижающим производственную ценность почв. Поэтому лучшими в агрономическом отношении будут некаменистые и слабокаменистые, худшими — сильнокаменистые почвы.

Химический и минералогический состав отдельных механических фракций почв и почвообразующих пород. Обладая различными физическими свойствами, отдельные механические фракции почв отличаются в то же время различным минералогическим и химическим составом (табл. 3).

Из таблицы видно, что химический состав в заметной степени меняется в зависимости от величины минеральных частичек: чем крупнее они, тем больше содержится в них таких инертных веществ, как SiO2, тем беднее они такими соединениями, которые содержат в себе железо, кальций, магний, фосфор и, наоборот, чем мельче частицы, тем больше в их составе таких элементов, как Р, Са, Mg, Fe и А1.

Правда, приведенные данные не являются типичными для всех встречающихся в природе почвообразующих пород и почв, но они характеризуют то общее положение, что именно мельчайшие глинистые частички составляют наиболее ценную часть почвы, в которой главным образом сосредоточены основные запасы многих необходимых для растений питательных зольных элементов.

Это объясняется тем, что в грубых механических фракциях преобладают преимущественно кварц и полевые шпаты с высоким содержанием кремнезема, а в тонких — в основном глинные минералы (каолинит, галлуазит, монтмориллонит, аллофан, бейделлит, нонтронит и др.) с низким содержанием кремнезема и высоким содержанием полуторных окислов калия, магния и химически связанной воды.

Наиболее сложной в отношении химического состава является иловатая фракция (<0,001 мм), в которую входят все коллоидные соединения почвы.

Вместе с тем, чем мельче минеральные частицы, тем больше их удельная поверхность и тем сильнее у них выражена возможность для активного взаимодействия с элементами окружающей среды.

В отличие от глинистых частичек каменисто-хрящеватые элементы механического состава почвы представляют собой наименее подвижную и наименее активную часть почвы. Как непосредственный источник минеральной пищи для растений эти элементы имеют ничтожное значение. Они оказывают некоторое влияние только на характер физических процессов, совершающихся в почве, на степень проникновения в почву влаги, воздуха и на другие физические явления.

Таким образом, механический состав характеризует в известной степени не только физические свойства, но и химический состав почвы и материнской породы.

 

Минералогический состав

Около 50—60 % объёма и до 90—97 % массы почвы составляютминеральные компоненты. Минералогический состав почвы отличается от состава породы, на которой она образовалась: чем старше почва, тем сильнее это отличие.

Минералы, являющиеся остаточным материалом в ходе выветривания и почвообразования, носят название первичных. В зоне гипергенеза большинство из них неустойчиво и с той или иной скоростью разрушается. Одними из первых разрушаются оливин, амфиболы,пироксены, нефелин. Более устойчивыми являются полевые шпаты, составляющие до 10—15 % массы твёрдой фазы почвы. Чаще всего они представлены относительно крупными песчаными частицами. Высокой стойкостью отличаются эпидот, дистен, гранат, ставролит, циркон, турмалин. Содержание их обычно незначительно, однако позволяет судить о происхождении материнской породы и времени почвообразования. Наибольшую устойчивость имеет кварц, который выветривается за несколько миллионов лет. Благодаря этому в условиях длительного и интенсивного выветривания, сопровождающегося выносом продуктов разрушения минералов, происходит его относительное накопление.

Почва характеризуется высоким содержанием вторичных минералов, образованных в результате глубокого химического преобразования первичных, или же синтезированных непосредственно в почве. Особенно важна среди них роль глинистых минералов — каолинита, монтмориллонита, галлуазита, серпентина и ряда других. Они обладают высокими сорбционными свойствами, большой ёмкостью катионного и анионного обмена, способностью к набуханию и удержанию воды, липкостью и т. д. Этими свойствами во многом обусловлена поглотительная способность почв, её структура и, в конечном счёте, плодородие.

Высоко содержание минералов-оксидов и гидроксидов железа (лимонит, гематит), марганца (вернадит, пиролюзит, манганит), алюминия (гиббсит) и др., также сильно влияющие на свойства почвы — они участвуют в формировании структуры, почвенного поглощающего комплекса (особенно в сильно выветрелых тропических почвах), принимают участие в окислительно-восстановительных процессах. Большую роль в почвах играют карбонаты (кальцит, арагонит см. карбонатно-кальциевое равновесие в почвах). В аридных регионах в почве нередко накапливаются легкорастворимые соли (хлорид натрия, карбонат натрия и др.), влияющие на весь ход почвообразовательного процесса.

 

Органическая часть почвы

Основные статьи: Органическая часть почвы, Гумус

В почве содержится некоторое количество органического вещества. В органогенных (торфяных) почвах оно может преобладать, в большинстве же минеральных почв его количество не превышает нескольких процентов в верхних горизонтах.

В состав органического вещества почвы входят как растительные и животные остатки, не утратившие черт анатомического строения, так и отдельные химические соединения, называемые гумусом. В составе последнего находятся как неспецифические вещества известного строения (липиды, углеводы, лигнин, флавоноиды, пигменты, воск, смолы и т. д.), составляющие до 10—15 % всего гумуса, так и образующиеся из них в почве специфические гумусовые кислоты.

Гумусовые кислоты не имеют определённой формулы и представляют собой целый класс высокомолекулярных соединений. В советском и российском почвоведении они традиционно разделяются на гуминовые и фульвокислоты.

Элементный состав гуминовых кислот (по массе): 46—62 % C, 3—6 % N, 3—5 % H, 32—38 % O. Состав фульвокислот: 36—44 % C, 3—4,5 % N, 3—5 % H, 45—50 % O. В обоих соединениях присутствуют также сера (от 0,1 до 1,2 %), фосфор (сотые и десятые доли %). Молекулярные массы для гуминовых кислот составляют 20—80 кДа (минимальная 5 кДа, максимальная 650 кДа), для фульвокислот 4—15 кДа. Фульвокислоты подвижнее, растворимы на всём диапазоне pH (гуминовые выпадают в осадок в кислой среде). Отношение углерода гуминовых и фульвокислот (Cгк/Cфк) является важным показателем гумусового состояния почв.

В молекуле гуминовых кислот выделяют ядро, состоящее из ароматических колец, в том числе азотсодержащих гетероциклов. Кольца соединяются «мостиками» с двойными связями, создающими протяжённые цепи сопряжения, обуславливающие тёмную окраску вещества[5]. Ядро окружено периферическими алифатическими цепями, в том числе углеводородного и полипептидного типов. Цепи несут различные функциональные группы (гидроксильные, карбонильные, карбоксильные,аминогруппы и др.), что является причиной высокой ёмкости поглощения — 180—500 мг-экв/100 г.

О строении фульвокислот известно значительно меньше. Они имеют тот же состав функциональных групп, однако более высокую ёмкость поглощения — до 670 мг-экв/100 г.

Механизм формирования гумусовых кислот (гумификация) до конца не изучен. По конденсационной гипотезе[6] (М. М. Кононова, А. Г. Трусов) эти вещества синтезируются из низкомолекулярных органических соединений. По гипотезе Л. Н. Александровой[7]гумусовые кислоты образуются при взаимодействии высокомолекулярных соединений (белки, биополимеры), затем постепенно окисляются и расщепляются. Согласно обеим гипотезам в этих процессах принимают участие ферменты, образуемые преимущественно микроорганизмами. Есть предположение о чисто биогенном происхождении гумусовых кислот. По многим свойствам они напоминают тёмноокрашенные пигменты грибов.

 

Почвенная структура

Структура почвы [2] — физическое строение твёрдой части и порового пространства почвы, обусловленное размером, формой, количественным соотношением, характером взаимосвязи и расположением как механических элементов, так и состоящих из них агрегатов.

Твёрдая часть почвы [2] — совокупность всех видов частиц, находящихся в почве в твёрдом состоянии при естественном уровне влажности.

Поровое пространство в почве [2] — разнообразные по размерам и форме промежутки между механическими элементами и агрегатами почвы, занятые воздухом или водой.

Минеральные частицы почвы всегда объединяются в агрегаты различной прочности, размеров и формы. Вся совокупность агрегатов, характерных для почвы, называется её структурой. Факторами образования агрегатов являются: набухание, сжатие и растрескивание почвы в ходе циклов увлажнения-иссушения и замерзания-оттаивания, коагуляция почвенных коллоидов(наиболее важна в этом роль органических коллоидов), цементация частиц малорастворимыми соединениями, образованиеводородных связей, связей между нескомпенсированными зарядами кристаллической решётки минералов, адсорбция, механическое сцепление частиц гифами грибов, актиномицетов и корнями растений, агрегация частиц при прохождении черезкишечник почвенных животных.

Структура почвы оказывает влияние на проникновение воздуха к корням растений, удержание влаги, развитие микробного сообщества. В зависимости только от размера агрегатов урожай может меняться на порядок. Оптимальна для развития растений структура, в которой преобладают агрегаты размером от 0,25 до 7—10 мм (агрономически ценная структура). Важным свойством структуры является её прочность, особенно водоустойчивость.

Преобладающая форма агрегатов является важным диагностическим признаком почвы. Выделяют[8] округло-кубовидную (зернистую, комковатую, глыбистую, пылеватую), призмовидную (столбовидную, призмовидную, призматическую) и плитовидную (плитчатую, чешуйчатую) структуру, а также ряд переходных форм и градаций по размеру. Первый тип характерен для верхних гумусовых горизонтов и обуславливает большую порозность, второй — для иллювиальных, метаморфических горизонтов, третий — для элювиальных.

 

Жидкая фаза почв

Состояния воды в почве

Основная статья: Водный режим почв

В почве различают воду связанную и свободную. Первую частицы почвы настолько прочно удерживают, что она не может передвигаться под влиянием силы тяжести,а свободная вода подчинена закону земного притяжения. Связанную воду в свою очередь делят на химически и физически связанную.

Химически связанная вода входит в состав некоторых минералов. Эта вода конституционная, кристаллизационная и гидратная. Химически связанную воду можно удалить лишь путем нагревания, а некоторые формы (конституционную воду) - прокаливанием минералов. В результате выделения химически связанной воды свойства тела настолько меняются, что можно говорить о переходе в новый минерал.

Физически связанную воду почва удерживает силами поверхностной энергии. Поскольку величина поверхностной энергии возрастает с увеличением общей суммарной поверхности частиц, то содержание физически связанной воды зависит от размера частиц, слагающих почву. Частицы крупнее 2 мм в диаметре не содержат физически связанную воду; этой способностью обладают лишь частицы, имеющие диаметр менее указанного. У частиц диаметром от 2 до 0,01 мм способность удерживать физически связанную воду выражена слабо. Она возрастает при переходе к частицам меньше 0,01 мм и наиболее выражена у цредколлоидных и особенно коллоидных частиц. Способность удерживать физически связанную воду зависит не только от размера частиц. Определенное влияние оказывает форма частиц и их химикоминералогический состав. Повышенной способностью удерживать физически связанную воду обладает перегной, торф. Последующие слои молекул воды частица удерживает со все меньшей силой. Это рыхло связанная вода. По мере отдаления частицы от поверхности притяжение ею молекул воды постепенно ослабевает. Вода переходит в свободное состояние.

Первые слои молекул воды, т.е. гигроскопическую воду, частицы почвы притягивают с громадной силой, измеряемой тысячами атмосфер. Находясь под столь большим давлением, молекулы прочно связанной воды сильно сближены, что меняет многие свойства воды. Она приобретает качества как бы твердого тела.. Рыхло связанную воду почва удерживает с меньшей силой, ее свойства не так резко отличны от свободной воды. Тем не менее сила притяжения еще настолько велика, что эта вода не подчиняется силе земного притяжения и по ряду физических свойств отличается от свободной воды.

Капиллярная скважность обусловливает впитывание и удержание в подвешенном состоянии влаги, приносимой атмосферными осадками. Проникновение влаги по капиллярным порам в глубь почвы осуществляется крайне медленно. Водопроницаемость почвы обусловлена в основном некапиллярной скважностью. Диаметр этих пор настолько велик, что влага не может в них удерживаться в подвешенном состоянии и беспрепятственно просачивается в глубь почвы.

При поступлении влаги на поверхность почвы сначала идет насыщение почвы водой до состояния полевой влагоемкости, а затем через насыщенные водой слои возникает фильтрация по некапиллярным скважинам. По трещинам, ходам землероек и другим крупным скважинам вода может проникать в глубь почвы, опережая насыщение водой до величины полевой влагоемкости.

Чем выше некапиллярная скважность, тем выше и водопроницаемость почвы.

В почвах кроме вертикальной фильтрации существует горизонтальное внутрипочвенное передвижение влаги. Поступающая в почву влага, встречая на своем пути слой с пониженной водопроницаемостью, передвигается внутри почвы над этим слоем в соответствии с направлением его уклона.

 

 

ПРАКТИКА

 

МОРФОЛОГИЯ ПОЧВ – сумма внешних признаков, которые являются результатом процессов формирования и поэтому отражают происхождение (генезис) почв, историю их развития, их физические и химические свойства. Морфологические признаки доступны простому визуальному наблюдению, но для более точного анализа используют как простые приспособления (например, лента с сантиметровыми делениями для определения мощности почвы), так и достаточно сложные приборы (поляризационные микроскопы, применяемые для изучения микроскопических морфологических признаков).

В качестве основных морфологических признаков почвы выделяют: почвенный профиль, окраску и цвет почв, почвенную структуру, гранулометрический (механический) состав почв, сложение почв, новообразования и включения.

Почвенный профиль. При рассмотрении достаточно глубокого почвенного разреза можно увидеть, что почвенная толща имеет слоистое строение.

Эта псевдослоистость обусловлена разделением почвенной толщи на почвенные горизонты, каждый из которых более или менее однороден по механическому, минералогическому, химическому составу, физическим свойствам, структуре, цвету и другим признакам. Почвенные горизонты обособляются постепенно в процессе формирования почвы, отсюда их другое название – «генетические » горизонты. Однако даже в окончательно сформированных почвах горизонты, как правило, не имеют резкой границы и постепенно переходят один в другой. Совокупность генетических горизонтов образует почвенный профиль.

Принцип расчленения почвенной толщи на генетические горизонты установлен впервые В.В.Докучаевым, им же были введены для них первые буквенные обозначения.

В различных типах почв генетические горизонты существенно отличаются, однако в первом приближении выделяют два типа строения почвенного профиля – автоморфный и гидроморфный.

Две системы символов генетических горизонтов почв: без скобок указано обозначение горизонта, принятое в нашей стране, в скобках указано обозначение горизонта, принятое на Международном обществе почвоведов (Международное общество почвоведов (International Association of Soil Science) было основано в 1924, его члены – научные учреждения и ученые более 100 стран, местопребывание общества – Амстердам).

Почвенный профиль автоморфных почв. Автоморфные почвы– это почвы, формирование которых проходит в условиях хорошо дренируемых водоразделов, т.е. под влиянием атмосферной влаги, систематические нисходящие токи которой обуславливают перемещение химических элементов сверху вниз. Режим почвенной влаги в этих условиях может быть как промывным, так и непромывным. Грунтовые воды расположены относительно глубоко.

Основные генетические горизонты почвенного профиля этого типа. Перегнойно-аккумулятивная часть профиля. Здесь преобразуется отмершее органическое вещество, систематически накапливается почвенный перегной и гумус и аккумулируются зольные элементы, необходимые для нормального питания растений. В перегнойно-аккумулятивной части профиля идут не только процессы накопления: часть химических элементов в виде подвижных как органических, так и неорганических соединений выносится за пределы гумусового горизонта, однако, в целом, преобладает тенденция к накоплению. Цвет этой части профиля меняется от черного, бурого и коричневого до светло-серого, что обусловлено составом и количеством гумуса. Мощность этой части профиля меняется в различных почвах от нескольких сантиметров до 1 метра. В эту часть профиля входят следующие горизонты:

Горизонт А0 (0) самая верхняя часть почвенного профиля. Это легкая подстилка (степной войлок), представляющая собой опад растений на различных стадиях разложения – от свежего до почти разложившегося.

Горизонт Ат (Н) поверхностный горизонт почвы, состоящий из насыщенного водой торфа.

Горизонт А 1 (А) верхний темный горизонт почвы, содержащий наибольшее количество органического вещества (в том числе, и наибольшее количество гумифицированного органического вещества). Этот горизонт еще называют гумусовым горизонтом.

Переходная часть профиля представляет собой постепенный переход от гумусового горизонта к почвообразующей породе, здесь происходят различные, часто противоположно-направленные процессы.

Для верхнего горизонта переходной части профиля характерно вымывание подвижных соединений в более низкие почвенные горизонты, в некоторых почвах очень сильное (например, в подзолистых). В этом случае обособляется самостоятельный горизонт вымывания А2 (Е), откуда вынесены все более или менее подвижные соединения. Горизонт вымывания также называют элювиальным горизонтом, он резко выделяется в почвенном профиле своим внешним видом. Вследствие вымывания у него белесая, напоминающая цвет золы окраска, он бесструктурный или слойный, рыхлый. Элювиальный горизонт обеднен илистыми частицами, гумусом и другими соединениями частицами за счет вымывания их в нижележащие слои и относительно обогащен остаточным кремнеземом.

В нижней половине переходной части профиля преобладает вмывание, т.е. выпадение (осаждение) соединений тех химических элементов и мелких частиц, которые были вымыты из верхней части почвенной толщи. Глубина перемещения частиц и соединений в разных условиях различна, однако, в общем, более растворимые соединения мигрируют глубже, чем менее растворимые, поэтому понятие горизонта вмывания несколько неопределенно. Обычно в качестве горизонта вмывания(или иллювиального горизонта) выделяют горизонт, характеризующийся накоплением глины, окислов железа, алюминия и марганца.

Этот горизонт четко выделяется своей бурой, охристо-бурой или красновато-бурой окраской, оструктуренностью и большей (по сравнению с другими почвенными горизонтами) плотностью. Иллювиальный горизонт обозначают символом В.

В почвах, где не наблюдаются существенные перемещения веществ, в почвенной толще нет обособления элювиального и иллювиального горизонтов. В таких почвах символом В обозначают переходный слой между гумусовым горизонтом и почвообразующей породой, характеризуемый постепенным ослаблением процессов аккумуляции гумуса, разложения первичных минералов, он может подразделяться на В 1 – горизонт с преобладанием гумусовой окраски, В 2 – подгоризонт с более слабой и неравномерной гумусовой окраской и В 3 – подгоризонт окончания гумусовых затеков.

Горизонт В к – максимальная аккумуляция карбонатов, обычно располагается в средней или нижней части профиля и характеризуется видимыми вторичными выделениями карбонатов в виде налетов, прожилок, псевдомицелия, белоглазки, редких конкреций.

Горизонт G – глеевый, характерен для почв с постоянно избыточным увлажнением, которое вызывает восстановительные процессы в почве и придает горизонту характерные черты – сизую, серовато-голубую или грязно-белую окраску, наличие ржавых и охристых пятен, слитость, вязкость и т. д.

Почвообразующая порода. Ниже переходной части профиля залегает материнская (почвообразующая) горная порода, на которой сформировалась данная почва. В почвоведении эта порода обозначается как горизонт С,она уже не затронута специфическими процессами почвообразования (аккумуляцией гумуса, выносом элементов и т.д.), однако верхняя часть горизонта несет следы почвообразования в виде соединений, привнесенных сюда из верхней части почвенного профиля.

Подстилающая горная порода. Горизонт D (R) подстилающая горная порода, залегающая ниже материнской (почвообразующей) горной породы и отличающаяся от нее своими свойствами.

Почвенный профиль гидроморфных почв, т. е. почв, формирование которых происходит в условиях близкого расположения грунтовых вод. В этом случае процесс почвообразования идет под воздействием грунтовых вод, которые периодически или постоянно обогащают почвенную толщу определенным химическими элементами и создают специфическую геохимическую обстановку. Режим почвенной влаги в этих условиях соответствует выпотному или застойному.

При близком залегании грунтовых вод и капиллярном их подъеме в почвенную толщу различные соединения выпадают примерно в той же последовательности, как и при нисходящем движении вод. Однако в то время как при нисходящем движении ближе к поверхности расположены менее растворимые соединения, при восходящем движении грунтовых вод картина обратная – более растворимые соединения находятся близко к поверхности или располагаются непосредственно на ней.

Почвенный профиль гидроморфных почв состоит, во-первых, из более или менее выраженной перегнойно-аккумулятивной части, и во-вторых, из системы минерально-аккумулятивных горизонтов, каждый из которых называется по слагающему его соединению.

Помимо двух основных типов строения почвенного профиля – автоморфного и гидроморфного, в природе встречаются многочисленные случаи переходного строения, это объясняется сменой условий автоморфного и гидроморфного почвообразования.

Кроме этих горизонтов выделяются переходные горизонты, для которых используются двойные обозначения, например, А 1 А 2 – горизонт, прокрашенный гумусом и имеющий признаки оподзоленности (вымывания элементов), А 2 В – горизонт, имеющий черты элювиального горизонта А 2 и иллювиального В, А1С – переходный горизонт от гумусового к материнской породе и т. д.

Второстепенные признаки обозначаются индексом с дополнительной малой буквой, например Вg – иллювиальный горизонт с пятнами оглеения, Сk – карбонатная почвообразующая порода и т.д.

Кроме обозначения горизонта индексом, почвоведы обязательно используют и словесные названия этих горизонтов: гумусовый, подзолистый, глеевый, торфянистый, солонцовый, иллювиально-гумусовый, погребенный и т. д.

Обычно переход между генетическими горизонтами постепенный, поэтому граница между горизонтами, в известной мере, условна и представлена не линией, а некоторой переходной полосой. Иногда переход между горизонтами четкий, но граница при этом бывает не обязательно ровной, а языковатой. В этом случае масса верхнего горизонта в виде языков и потеков заходит в пределы нижерасположенного генетического горизонта. Учет плотности почв значительно облегчает выделение горизонтов и установление их границ.

Приведенная система выделения почвенных горизонтов и их буквенных обозначений является наиболее распространенной в нашей стране, однако кроме нее есть много других подобных систем. Сейчас разрабатывается система более сложной индексации горизонтов почвенного профиля.

 

Окраска и цвет почвы – наиболее выразительные морфологические признаки, по которым выделяются генетические горизонты в профиле и устанавливаются их границы. Эти признаки характеризуют тип почвообразования и состав почвообразующих пород.

Понятия цвет и окраскав почвоведении различаются. Термин окраска более общий и характеризует изменения (неоднородность, пятнистость) цветовых характеристик горизонта. Терминцвет колористическое понятие, относится непосредственно к сочетанию тонов, интенсивности и другим хроматическим параметрам. Многие почвы получили свое название по преобладающему цвету: черноземы, красноземы, сероземы и т.д.

Окраска отдельного почвенного горизонта может быть однородной и неоднородной. Однородная– весь горизонт однообразно окрашен в какой-либо цвет, часто осветляется к нижней границе. Неоднородная – горизонт окрашен в различные цвета, при этом форма участков разного цвета может быть различной (пятна, полосы, мраморовидность). Окраска почвенной массы никогда не бывает «чистой» (монотонной), а сопровождается дополнительными тонами, придающими ей тот или иной оттенок.

Цвет почвы зависит от наличия в почве того или иного количества красящих веществ. Верхние горизонты окрашены гумусом в темные цвета (серые и коричневые). Чем больше гумуса содержит почва, тем темнее ее цвет. Железо и марганец придают почве бурые, охристые, красные тона. Белесые, белые тона предполагают наличие процессов оподзоливания (вымывания продуктов разложения минеральной части почв). Белый цвет может быть признаком осолодения, засоления, окарбоначивания, т. е. присутствия в почве кремнезема, каолина, углекислого кальция и магния, гипса и других солей. Синие (сизые) и зеленые цветавсегда связаны с переувлажнением почв и с присутствием специфических минералов, содержащих закись железа.

Цвет нижних горизонтов почвенного профиля, в основном, определяется окраской почвообразующих пород, их составом и степенью выветривания. Наиболее характерны различные оттенки коричнево-бурого цвета, обусловленные окраской плейстоценовых отложений – широко распространенных почвообразующих пород.

Цвет почвы в значительной степени зависит от степени влажности и источника освещения, поэтому окончательное определение цвета принято делать по образцам в сухом состоянии при рассеянном дневном освещении.

Определение цвета носит несколько субъективный характер. Чтобы избавиться от субъективизма в описании цвета почв на протяжении всей истории почвоведении различные авторы пытались унифицировать почвенные цвета. В нашей стране наиболее широкое применение получил треугольник цветов С.А.Захарова.В вершинах этого треугольника – белый, черный и красный цвета, а по сторонам и медианам нанесены названия различных цветов, производных от смешения трех основных. За границей широко используются цветные таблицы Манселла, где каждый цвет характеризуется тоном (оттенком), интенсивностью (степенью осветленности) и насыщенностью тона (чистотой спектрального цвета) и может быть обозначен буквенно-цифровыми индексами, удобными для создания базы данных с целью компьютерной обработки информации.

 

Структурность почв – это способность почвы естественно распадаться на отдельности (агрегаты), состоящие из склеенных перегноем и иловатыми частицами механических элементов почвы. Форма структурных отдельностей, их размер и прочность четко отражают характер процессов, протекающих в почве.

Структура почвы оказывает влияние на аэрацию почвы и ее водопроницаемость, определяет устойчивость почвы против эрозии. На образование почвенной структуры оказывают влияние: корневая система травянистой растительности, деятельность почвенной фауны, а также различные физические процессы: увлажнение и высыхание, замерзание и оттаивание, нагревание и охлаждение. Главными клеющими веществами почв при их оструктуривании являются: гумус, глинистое вещество, гидроксиды железа и алюминия. Поэтому песчаные почвы, лишенные глинистых частиц и содержащие мало гумусовых веществ, бесструктурны. Важную роль структурообразования в гумусовом горизонте играют травянистые растения, создающие своей корневой системой комковатую структуру.

По форме структурные отдельности подразделяются на три основных типа: кубовидный тип (отдельности имеют одинаковые размеры по всем трем измерениям и обычно представлены неправильными многогранниками), призмовидный тип (преобладает одно из трех измерений, в силу чего отдельность более или менее вытянута вверх); плитовидный тип (отдельность уплощена по высоте и развита по двум другим измерениям). В нашей стране используют классификацию структурных отдельностей по форме, размеру и характеру поверхности, разработанную в 1927 С.А.Захаровым.

Название структуры почвы дается по преобладающим отдельностям. Каждому типу почв и каждому генетическому горизонту характерны определенные типы почвенных структур. Например, для гумусовых горизонтов характерна зернистая, комковато-зернистая, порошисто-комковатая структура; для элювиальных горизонтов – плитчатая, листоватая, чешуйчатая, пластинчатая; для иллювиальных – столбчатая, призматическая, ореховатая, глыбистая и т.д.

В полевых условиях для определения структуры почв из исследуемого горизонта ножом вырезают небольшой образец грунта и подбрасывают его несколько раз на ладони до тех пор, пока он не распадется на структурные отдельности. Их рассматривают и определяют степень их однородности, размер, форму, характер поверхности.

Изменение условий почвообразования отражается на структуре гумусового горизонта. Прочность структурного пахотного горизонта имеет важно для земледелия.

Большое значение для агрономической характеристики почвы имеет водопрочность структуры почвы, т.е. образование прочных, не размываемых в воде отдельностей. Почвы, обладающие водопрочной структурой, имеют благоприятный для развития растений водно-воздушный режим, механические свойства и т.д. Почвы, не имеющие такой структуры, быстро заплывают, становятся непроницаемыми для воды и воздуха, а при высыхании растрескиваются на крупные глыбы.

Гранулометрический (механический) состав почв. Гранулометрическим (механическим) составом почвы называется весовое соотношение в почве частиц разного размера. Под частицами разного размера подразумеваются группы частиц, диаметр которых лежит в определенных пределах. Каждая из таких групп называетсягранулометрической (механической) фракцией почвы.

Группировка механических элементов по размерам называется классификацией механических элементов.

В основу разделения механических фракций положены различия, главным образом, в водно-физических свойствах частиц. Так, каменистая часть почвы (d > 1 мм) с точки зрения водно-физических свойств не активна, инертна; она не способна удерживать влагу. Песок (d = 1,0–0,05 мм) обладает слабой водоудерживающей способностью. Пыль (d = 0,05–0,001 мм) очень хорошо удерживает воду и обладает хорошей водоподъемной способностью; ил (d < 0,001 мм) имеет плохую водопроницаемость и меньшую, чем у пылеватых частиц, водоподъемную способность.

В почвоведении принята классификация почв по механическому составу, разработанная Качинским, по которой все почвы подразделяются в зависимости от содержания в них физической глины, т.е. частиц, диаметр которых менее 0,01 мм. Механический состав почвы является важной характеристикой, необходимой для определения производственной ценности почвы, ее плодородия, способов обработки и т.д. От механического состава зависят почти все физические и физико-механические свойства почвы: влагоемкость, водопроницаемость, порозность, воздушный и тепловой режим и др. В полевых условиях определение механического состава производится по степени пластичности – наощупь. При известном навыке почвы можно достаточно четко разделять на глинистые, суглинистые, супесчаные и песчаные:

Песчаные почвы – бесструктурны, не обладают связностью, сыпучи, при большом увлажнении можно скатать в шарик.

Супесчаные почвы – в сухом состоянии сыпучи, бесструктурны, во влажном состоянии легко скатываются в шар, но «шнура» или «колбаски» не образуют.

Суглинистые почвы – в сухом состоянии легко втираются в кожу, во влажном состоянии пластичны и легко раскатываются в «шнур» или «колбаску». Чем тоньше «шнур» или «колбаска», тем данная почва ближе к глине.

Глинистые – в сухом состоянии при растирании на ладони дают тонкий однородный порошок (пудру), хорошо втирающийся в кожу, во влажном состоянии раскатываются в длинный, тонкий шнур, легко сворачиваемый в кольцо без трещин.

Окончательное название почвы по механическому составу производится в лаборатории при помощи специального анализа, и на основании этого дается название почвы. Общее название почвы по механическому составу дается по данным механического анализа верхнего горизонта (0–25 см). Например, чернозем южный, глинистый.

Сложение почвы. Под сложением почвы понимают внешнее выражение степени и характера ее плотности и порозности. Сложение оказывает большое влияние на сопротивление почвы почвообрабатывающим орудиям, на ее водопроницаемость и в значительной степени на глубину проникновения в нее корней растений.

Порозность почвы. Почвенные частички и структурные элементы, входящие в состав почвы, прилегают друг к другу не всеми своими плоскостями, а лишь отдельными точками или гранями, вследствие чего сама почва приобретает характер пористого тела, пронизанного целой системой трещин, пор, ячеек, пустот. Общий объем всех этих воздушных пор, полостей, трещин и пр. в определенном объеме почвы называют порозностью или скважностьюпочвы. Суммарный объем почвенных пор составляет от 25 до 60% объема почвы.

На порозность почвы большое влияние оказывает, прежде всего, структурное строение почвы: чем почвы структурнее, тем общая порозность больше (поскольку, помимо заключенных в комках пор, эти почвы имеют промежутки, находящиеся между структурными отдельностями). Всякое разрушение почвенной структуры, могущее произойти в результате воздействия на почву природных факторов или вследствие неправильной обработки почв, ведет за собой уменьшение общей порозности почвы. Заметное влияние на порозность почв оказывает также органическое вещество почв: чем органического вещества больше, тем больше порозность (так, например, порозность песка около 30%, а торфа – около 85%). Порозность заметно меняется в зависимости от глубины почвенного слоя: в верхних слоях она больше, в нижних – меньше. Объясняется это большим содержанием гумуса и лучшей структурой верхних горизонтов, большим воздействием на верхние слои почвы корней растений и роющих животных, а также меньшим давлением вышележащих слоев.

Размеры почвенных полостей различны, начиная от тончайших, так называемых капилляров, и кончая порами с диаметром 10 мм и крупнее. В связи с этим, помимо общей скважности, различают еще капиллярную и некапиллярную скважность почвы. Во всякой почве всегда есть оба вида скважности, причем преобладание того или иного вида зависит от механического и структурного состава почв.

Каждый вид скважности имеет различное значение в почвообразовательных процессах: капиллярная порозность, обычно заполненная водой, затрудняет свободный доступ воздуха в почву и продвижение атмосферной влаги из верхних горизонтов в нижние. Наличие же некапиллярной скважности устраняет эти нежелательные явления, создавая благоприятные условия как для почвообразовательных процессов, так и для развития растений. См. также ТИПЫ ПОЧВ.

Плотность почвы – это интегрированная плотность всех компонентов ее твердой фазы – различных минералов и органических веществ.

Степени плотности почв в сухом состоянии:

1). Рассыпчатое сложение – почва обладает сыпучестью, отдельные частицы не сцементированы между собой.

2). Рыхлое сложение – лопата легко входит в почву на полный «штык», почва хорошо оструктурена, но структурные агрегаты плохо сцементированы между собой.

3). Уплотненное сложение – лопата легко входит в почву на «полштыка», нож легко входит в стенку разреза, почва рассыпается на структурные и механические составляющие, во влажном состоянии обладает слабой связанностью.

4). Плотное сложение – лопата или нож с трудом входят в почву на глубину 4-5 см, почва с трудом разламывается руками; в сухом состоянии монолитна, выбивается крупными глыбами, во влажном состоянии – вязкая масса.

5). Очень плотное (слитое) сложение – почти не поддается копанию лопатой (входит в почву не глубже 1 см), нужны лом, кирка. В сухом состоянии монолитна, крупноглыбиста, нож не входит в стенку разреза, во влажном состоянии очень вязкая и упругая.

Сложение почв зависит от ее механического и химического состава и от ее влажности. Это свойство имеет большое практическое значение в сельском хозяйстве и характеризует ее с точки зрения трудности обработки.

В пределах почвенного профиля сложение почвы (т.е. ее плотность и порозность) может сильно изменяться. Верхнему гумусово-аккумулятивному горизонту чаще всего бывает присуще рыхлое сложение и большая меж- и внутриструктурная порозность. Сложение иллювиального горизонта, как правило, более плотное, трещиноватое.

Новообразования и включения – это локальные обособленные вещества, отличающиеся по своему строению и вещественному составу от вмещающей их почвенной массы. Возникают в результате действия различных почвообразовательных процессов.

Каждое новообразование формируется в определенных условиях и поэтому является индикатором почвенных процессов, либо протекавших ранее, либо идущих сегодня – это делает новообразования важными диагностическими признаками для классификации почв.

Почвенные новообразования очень разнообразны и различаются по форме, цвету, химическому и минералогическому составу. Могут быть представлены налетами, пятнами, примазками, потеками, прожилками по ходам землероев и корням растений, а также более плотными формами – конкрециями или стяжениями, плотными сцементированными железистыми прослойками и др.

Квключениямотносятся инородные тела, происхождение которых не связано с процессом почвообразования: обломки горных пород, не связанных с материнской породой, валуны, щебень, захороненные остатки раковин, кости современных и вымерших животных, остатки материальной культуры человека (обломки кирпича, керамики, стекла, археологические находки и др.).

Включения различного характера часто помогают судить о происхождении почвообразующей породы и возрасте почв.


Дата добавления: 2015-08-10; просмотров: 66 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Животные организмы| Сказка про теремок

mybiblioteka.su - 2015-2024 год. (0.038 сек.)