Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Способы доставки новых генов в геном человека

Читайте также:
  1. I. Преображение Человека – социальный заказ общества
  2. I. Тела человека
  3. II. Свойства и особенности невидимых тел человека.
  4. III. Падение человека
  5. III.3.4. КАРТА ПЕРВИЧНОГО ИММУННОГО СТАТУСА ЧЕЛОВЕКА
  6. IV. ЭДЕМ КАК МЕТАФОРА: ЭВОЛЮЦИЯ ЧЕЛОВЕКА
  7. V. Сроки доставки, выдача груза. Очистка транспортных средств и контейнеров

Ретровирусные векторы. Для доставки трансгенов в организм человека в целях генотерапии ретровирусные векторы используются наиболее широко и являются одним из наиболее эффективных средств доставки генетического материала в геном человека. Специфичность взаимодействия ретровирусов с поверхностью клеток-мишеней в момент заражения обеспечивается белком оболочки их вириона, кодируемого геном env, продукт которого контактирует с белком-рецептором заражаемых клеток. Это создает предпосылки для направленного изменения круга хозяев вируса, т.е. клеток, которые он может заражать, путем изменений белка вирусной оболочки. Многие ретровирусы обладают ограниченным кругом хозяев вследствие функционирования вышеупомянутого механизма. Классическим примером такого рода является вирус иммунодефицита человека (ВИЧ), который способен заражать лишь субпопуляцию лимфоцитов, экспрессирующих на своей поверхности рецептор CD4.

Наиболее пристальное внимание как к средству доставки трансгенов при генотерапии уделяется вирусу лейкоза мышей Молони (MoMLV). Вирусы группы MoMLV-E обладают способностью заражать практически все исследованные клетки грызунов (вирусы с кругом хозяев, который не выходит за рамки организмов, обычно заражаемых такими вирусами, получили название экотропных). В отличие от этого вирусы группы MoMLV-А способны заражать большое число клеток млекопитающих, включая клетки человека (вирусы с широким кругом хозяев получили название амфотропных). В настоящее время разрабатываются три основные стратегии искусственного изменения тропизма (круга хозяев) вирусов этих групп, что необходимо для доставки трансгенов в клетки человека: прямое изменение последовательности нуклеотидов гена белка оболочки ретровирусов, соединение белка оболочки с новыми лигандами и псевдотипирование.

Модификации гена белка оболочки. Последовательности нуклеотидов гена env, отвечающие за взаимодействие с клеточными рецепторами, определены и могут быть непосредственно замещены последовательностями, кодирующими лиганды невирусной природы. С использованием этого подхода удалось получить химерные белки оболочки, содержащие последовательности аминокислот, изменяющие тропизм вируса. В частности, слияние эпидермального фактора роста (ЭФР) с белком оболочки амфотропного ретровируса через расщепляемую протеиназой фактора Xa линкерную последовательность аминокислот приводило к взаимодействию вирусов преимущественно с ближайшими клетками, содержащими на своей поверхности рецепторы фактора. После отщепления ЭФР протеиназой вирусные частицы начинали заражать клетки, экспрессирующие гомологичные вирусные рецепторы. Однако необходимо иметь в виду, что специфическое взаимодействие ретровирусов с рецепторами на поверхности клеток-хозяев требует образования контактов между несколькими частями полипептидной цепи белка оболочки и рецептора. Кроме того, белок оболочки ретровирусов не только обеспечивает контакт с рецепторами на поверхности клеток-мишеней, но и участвует в последующих этапах проникновения вируса внутрь клеток – интернализации в составе комплекса с рецептором. Все это затрудняет практическое использование подхода с использованием прямого замещения последовательностей аминокислот белка оболочки новыми последовательностями для эффективного изменения тропизма ретровирусов.

Соединение белка оболочки с новыми лигандами. Первые успехи на этом пути были достигнуты путем создания конъюгатов антител с белком оболочки ретровирусов с последующим соединением таких антител с антителами, специфичными в отношении антигенов поверхности клеток посредством стрептавидина. При данном подходе изменение тропизма ретровирусов было достигнуто при использовании антител к антигенам главного комплекса гистосовместимости, ЭФР или рецепторам трансферрина, экспрессирующимся на поверхности клеток гепатомы. Однако после интернализации вирусных частиц интеграция вирусного генома в геном зараженных клеток проходила крайне неэффективно. Предполагают, что рецептор в комплексе со связанным с ним агентом после проникновения в клеточный компартмент блокирует доступ вирусного генома к клеточному ядру, поскольку при обычной инфекции он задерживается и деградирует на поверхности клеток.

Второй подход в этой группе методов использует химическое присоединение лактозы к белкам оболочки или десиалирование гликопротеинов оболочки вируса. Оба типа модификации дают возможность модифицированным вирусным частицам специфически взаимодействовать с асиалогликопротеиновыми рецепторами, присутствующими, например на поверхности гепатоцитов. Модифицированные таким способом экотропные вирусы приобретают способность с высокой эффективностью заражать гепатоциты человека.

Псевдотипирование. При использовании этой группы методов упаковка геномной РНК ретровирусов проходит в культивируемых клетках, которые экспрессируют гетерологичный белок оболочки, замещающий обычный вирусный белок в процессе внутриклеточного формирования ретровирусных частиц. Наиболее легко замещение белка вирусной оболочки происходит при использовании гомологичных белков близкородственных вирусов. Например, геном MoMLV может быть упакован в вирусные частицы с участием белков оболочки ретровирусов C-, но не D-типа. Неэффективным в этом процессе оказывается и белок оболочки ретровируса HTLV-1. В последнем случае он включается в оболочку только в присутствии всех остальных белков дикого типа вируса MoMLV. В практических целях широкое распространение получили клеточные линии, в которых геном рекомбинантного ретровируса упаковывается в оболочку амфотропного ретровируса (с широким кругом хозяев), например MoMLV-А. В другой популярной линии клеток происходит экспрессия белка оболочки вируса лейкоза гиббонов, а также гомологичных генов gag-pol вируса MoMLV. Подобное сочетание вирусных белков позволяет получать рекомбинантный вирус, пригодный для генотерапии, в высоком титре.

Эффективный перенос ретровирусных векторов происходит только в активно делящиеся клетки, экспрессирующие на своей поверхности соответствующие рецепторы. Стабильная интеграция ретровирусных векторов в геномную ДНК клеток-хозяев создает условия для длительной и эффективной экспрессии рекомбинантных генов, замещающих поврежденные аналоги. Вероятность того, что интеграция вектора в геном приведет к активации какого-либо онкогена, мала, и до сих пор это не наблюдалось в эксперименте. Размножение таких вирусов внутри клеток исключается самой процедурой их конструирования, так как они дефицитны по репликации. Ретровирусные векторы пригодны как для терапии ex vivo, так и для прямого переноса рекомбинантных генов в клетки реципиентов in vivo.

Аденовирусные векторы. В отличие от ретровирусов аденовирусы, в капсид которых упакованы рекомбинантные ДНК, способны заражать и неделящиеся клетки. Кроме того, этот тип векторов не интегрируется в геном клеток-реципиентов, в связи с чем их экспрессия внутри клеток носит временный характер. Векторы на основе аденовирусов используются в генотерапии реже.

Капсид аденовирусов представляет собой икосаэдр (правильный 20-гранник), каждая грань которого (гексон) составлена из шести идентичных белковых субъединиц, с его вершинами соединены пентоны (пентасубъединичные белки), к которым нековалентно N-концевой частью присоединены гомотримерные стержни (knobs) с глобулярными доменами на C-концах. Пять идентичных субъединиц, составляющих пентоны, содержат по одному мотиву из трех аминокислот Arg–Gly–Asp (RGD – в однобуквенном обозначении), специфически взаимодействующих с рецепторами (интегринами). Это дает возможность аденовирусам осуществлять контакт с интегринами aVb3 и aVb5 на поверхности клеток. Взаимодействие аденовирусов с клетками-мишенями происходит в два этапа. Вначале глобулярные домены стержней связываются с первичными (пока не охарактеризованными) рецепторами на поверхности клеток-мишеней, затем после взаимодействия пентонов с интегриновыми рецепторами происходит интернализация вирусных частиц. Одна из проблем специфичности доставки трансгенов с помощью аденовирусов заключается в том, что многие клетки обладают вышеупомянутыми первичными рецепторами для глобулярных доменов стержней аденовирусов. В связи с этим проводятся работы по изменению специфичности связывания глобулярных доменов стержней генно-инженерными методами. При таком подходе делаются попытки получения гибридных белков, объединяющих части полипептидных цепей белка стержней аденовирусов и белков-лигандов, например пептидных гормонов, в частности с гастрин-рилизинг-пептидом. Исследуется возможность подобного изменения белков пентона с тем, чтобы они взаимодействовали с альтернативными тканеспецифическими интегринами. Получены первые результаты, которые указывают на возможность прямой доставки трансгенов с помощью измененных аденовирусов к клеткам эндотелия и некоторым клеткам опухолей (в частности меланомы), которые экспрессируют интегрины aVb3. При этом исключалась возможность взаимодействия аденовирусов с клетками других типов, например эпителия, экспрессирующими интегрины aVb5.

Молекулярные конъюгаты векторной ДНК с лигандами. При таком подходе, используя поликатионы (например полилизин), создают комплексы очищенной векторной ДНК с лигандами. Получены молекулярные конъюгаты векторов с асиалогликопротеинами или IgA в качестве лигандов для доставки конъюгатов к гепатоцитам или клеткам эпителия дыхательных путей соответственно. Основная проблема, с которой приходится сталкиваться на этом пути, заключается в том, что конъюгаты после интернализации попадают в эндосомы, что ограничивает последующую экспрессию трансгенов. Для преодоления затруднений такого рода в состав конъюгатов пытаются включать компоненты аденовирусов, которые обладают эндосомолитической активностью. Нестабильность комплексов конъюгатов ограничивает их широкое применение в настоящее время.

Использование липосом для направленной доставки трансгенов. Направленная доставка трансгенов с использованием липосом уже испытана в различных клинических ситуациях. Основным подходом в данном направлении исследований является создание конъюгатов липосом с антителами или лигандами. Например, липосомы, объединенные с антителами к антигенам главного комплекса гистосовместимости мышей, обладают значительно большей эффективностью доставки ДНК к соответствующим клеткам-мишеням, чем липосомы сами по себе. Пептидный лиганд трансферрин был использован для направленной доставки ДНК к клеткам эритроидного ряда костного мозга, экспрессирующим на своей поверхности рецепторы трансферрина. Поскольку одним из основных требований к адресной доставке ДНК в ядра является отсутствие деградации трансгенов, часто используют объединение липосом с вирусными частицами (например вирусом Сендай или его компонентами, в частности F-частицами), которые облегчают доставку и делают ее более безопасной для транспортируемых молекул ДНК. Считают, что конечным результатом этого направления исследований должно быть создание " суперлипосом ", которые в комплексе с соответствующими антителами будут специфически сливаться с мембранами клеток-мишеней, обеспечивая проникновение рекомбинантных ДНК в клетки с помощью соответствующих вирусных белков с последующим транспортом их в ядра, направляемым сигнальными пептидами ядерного транспорта. Следует упомянуть и об использовании липосом для создания так называемых виросом – вирусных частиц, содержащих векторные молекулы нуклеиновых кислот, целиком заключенных в липосомы разнообразной структуры. Такой подход используется для изменения тропизма вирусов с целью направленной доставки векторных молекул при генотерапии.


Дата добавления: 2015-08-18; просмотров: 63 | Нарушение авторских прав


Читайте в этой же книге: Дезоксирибозимы | Аптамеры | Молекулы РНК в качестве РНК-репликаз | Возможность синтеза полипептидных цепей молекулами РНК | Способы получения трансгенных многоклеточных организмов | Исследование механизмов экспрессии генов | Токсигены в исследовании дифференцировки соматических клеток в онтогенезе | Изменение физиологического статуса лабораторных и сельскохозяйственных животных | Моделирование наследственных и приобретенных заболеваний человека | Трансгенные растения |
<== предыдущая страница | следующая страница ==>
Генотерапия наследственных и приобретенных заболеваний| Управление экспрессией трансгенов в клетках-мишенях

mybiblioteka.su - 2015-2024 год. (0.008 сек.)