Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Синтез белков, содержащих остатки селеноцистеина

Читайте также:
  1. II. Концепция Школы Духовного Синтеза
  2. X. Требования к дошкольных организациям и группам для детей, имеющих недостатки в физическом и умственном развитии
  3. А161. Биосинтез дочерней цепи молекулы ДНК происходит
  4. АНАЛИЗ И СИНТЕЗ ГИДРАВЛИЧЕСКИХ СЛЕДЯЩИХ ПРИВОДОВ С ОБРАТНЫМИ СВЯЗЯМИ ПО НАГРУЗКЕ
  5. Аналитический синтез (пространство и процедурность)
  6. Бесклеточные белоксинтезирующие системы
  7. БОЛЕЗНИ СИНТЕЗА ГЕМОГЛОБИНА

С помощью своеобразного механизма осуществляется передача генетической информации от генов к полипептидным цепям селенопротеинов с необычным аминокислотным остатком – селеноцистеином, входящим в их состав. У бактерий и млекопитающих известно более десяти ферментов, в состав активных центров которых входит остаток селеноцистеина, содержащего, в отличие от цистеина, атом селена вместо атома серы. Так, у E. coli гены форматдегидрогеназ H, N или O имеют в одной рамке считывания с кодирующей последовательностью нуклеотидов триплет TGA. Этому триплету в мРНК соответствует бессмысленный кодон UGA, на котором у подавляющего большинства других мРНК E. coli происходит терминация трансляции. Оказалось, что именно кодон UGA в мРНК вышеупомянутых генов кодирует селеноцистеин.

Встраивание этого аминокислотного остатка в полипептидные цепи регулируется весьма тонким механизмом. Перенос остатка селеноцистеина к рибосомам у E. coli осуществляется с помощью специальных молекул тРНК (тРНКSec), которые на первом этапе соединяются с остатком L-Ser при участии серил-тРНК-синтетазы. Образовавшаяся серил-тРНКSec далее в результате многоступенчатого процесса под действием селеноцистеилсинтазы превращается в селеноцистеил-тРНКSec. Селеноцистеилсинтаза обладает высокой специфичностью и не взаимодействует с другими изоакцепторными серил-тРНК бактериальных клеток. Именно селеноцистеил-тРНКSec в процессе трансляции распознает в мРНК кодон UGA, но лишь в определенном контексте: для правильного узнавания UGA-кодона как осмысленного важна последовательность длиной в 45 нуклеотидов, расположенная вслед за UGA-кодоном. Кроме того, для правильного узнавания UGA-кодона селеноцистеил-тРНКSec необходимо участие белкового продукта гена selB, который является гомологом фактора элонгации трансляции EF-Tu и обладает высоким сродством именно к селеноцистеил-тРНКSec, но не к серил-тРНКSec. К тем же результатам, хотя и с использованием другого, не вполне понятного механизма, приводит встраивание в полипептидные цепи остатков селеноцистеина у млекопитающих.

Рассмотренный пример показывает, что при необходимости живой организм может изменять смысл стандартного генетического кода. В этом случае генетическая информация, заключенная в генах, кодируется более сложным образом. Смысл кодона определяется лишь в контексте с определенной протяженной последовательностью нуклеотидов и при участии нескольких высокоспецифических белковых факторов. Данный пример по-новому освещает понятие гена и смысл заключенной в нем генетической информации и не является единственным в своем роде.

Описано изменение смысла антикодона в тРНК путем посттранскрипционной модификации остатка цитозина с образованием так называемого лизидина. В этом случае происходит ферментативное присоединение Lys к гетероциклу цитидина в положении 2. В результате образовавшееся модифицированное основание – лизидин распознается как уридин, что изменяет специфичность антикодона модифицированной тРНК. Другое U-подобное азотистое основание – 5-карбамоилметилуридин (U*), обнаружено в антикодоне тРНКPro (U*GG), хотя в соответствующем гене этот антикодон детерминирован последовательностью CGG. По-видимому, здесь происходит посттранскрипционное дезаминирование цитозина с последующей его гипермодификацией.

Таким образом, во всех приведенных примерах живым организмам недостаточно генетической информации, заключенной в их генах, для ее полноценной реализации в фенотипе. Пока не понятны причины, по которым организм избегает прямого кодирования соответствующих последовательностей нуклеотидов в своих генах, а предпочитает создание требуемых последовательностей в РНК путем посттранскрипционных модификаций первичных транскриптов. Такие факты меняют наше традиционное представление о генах как первичных носителях генетической информации.


Дата добавления: 2015-08-18; просмотров: 64 | Нарушение авторских прав


Читайте в этой же книге: Функциональные домены факторов транскрипции | Механизмы негативной регуляции транскрипции | Структура хроматина как специфический регулятор экспрессии генов | Метилирование ДНК в регуляции транскрипции | Факторы транскрипции позвоночных, на активность которых оказывает влияние метилирование остатков цитозина в узнаваемых ими регуляторных последовательностях нуклеотидов | Направленный транспорт, внутриклеточная локализация и депонирование мРНК | Сплайсинг РНК в регуляции экспрессии генов | Избирательная деградация мРНК | Регуляция инициации трансляции | Регуляция элонгации синтеза полипептидных цепей |
<== предыдущая страница | следующая страница ==>
Регуляция терминации трансляции| Последствия фолдинга вновь синтезированных полипептидных цепей

mybiblioteka.su - 2015-2024 год. (0.006 сек.)