Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

История оптоволоконной системы связи в мире

Читайте также:
  1. C - матрица (по форме напоминает куб) применяется для определения взаимосвязи элементов трех списков одновременно.
  2. D) невозмещаемые налоги, уплачиваемые в связи с приобретением объекта нематериальных активов.
  3. I Начальная настройка системы.
  4. I. ИСТОРИЯ
  5. I. ИСТОРИЯ ВОЗНИКНОВЕНИЯ МАСОНСКИХ ЛОЖ
  6. I. ИСТОРИЯ ВОПРОСА. ОСНОВНЫЕ ПОНЯТИЯ.
  7. I. Реформа пенсионной системы РФ.

К началу 2014 года семейство технологий подключения с помощью оптоволокна заработало себе достаточно неплохую репутацию жизнеспособного, масштабируемого варианта прокладки кабельного широкополосного доступа к глобальной сети. Несмотря на мировой экономический кризис, операторы, по всей видимости, будут продолжать вкладывать средства в оптоволокно.

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном и Жаком Бабинеттом еще в 1840 году. Спустя несколько лет Джон Тиндалл использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом и Джоном Бердом была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил до конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий[1]. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, — необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Преимуществами оптоволоконного типа связи являются[2]:

· Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;

· Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;

· Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий;

· Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;

· Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;

· Долговечность ВОЛС — срок службы волоконно-оптических линий связи составляет не менее 25 лет.

К недостаткам оптоволоконного типа связи относятся:

· Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;

· Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.


Дата добавления: 2015-08-18; просмотров: 108 | Нарушение авторских прав


Читайте в этой же книге: Виды подводных ВОЛС | Подводные оптические системы передачи | Необходимость организации подводной системы связи на Дальнем Востоке | О компаниях Ростелеком и Хуавей | Энергетическое оборудование для ПВОЛС | Подводные волоконно-оптические кабели | Подводные оптические усилители | Технология SDH | Технология WDM | Типы оптических волокон |
<== предыдущая страница | следующая страница ==>
Оптическое волокно типа NZDS. 51| Определение подводной волоконно-оптической системы связи

mybiblioteka.su - 2015-2024 год. (0.009 сек.)