Читайте также:
|
|
Как известно, катушечная группа представляет собой совокупность последовательно соединённых q катушек, катушечные стороны которых в пределах полюсного деления размещены в соседних пазах. При (рис. 1.25) МДС катушки в пределах полюсного деления имеет вид прямоугольника и следовательно, в данном случае будем иметь три прямоугольника, сдвинутых относительно друг друга на угол . В результате МДС катушечной группы можно получить путём сложения ординат прямоугольников. Однако обычно каждый из прямоугольников разлагают в ряд Фурье и сложением МДС катушек одного порядка определяют соответствующие гармоники МДС катушечной группы. Сделаем это для первой гармоники МДС. На рис.1.25,а изображен случай, когда . Там изображены первые гармоники катушек и катушечной группы.
Указанные гармоники МДС катушек можно представить в виде пространственных векторов, сдвинутых на угол α (рис. 1.25,б). Максимальная амплитуда первой гармоники МДС катушечной группы может быть получена геометрическим сложением МДС отдельных катушек.
,
где – коэффициент распределения для первой гармоники.
.
Физически этот коэффициент характеризует уменьшение МДС катушечной группы с числом витков , по сравнению с МДС катушки с тем же числом витков.
МДС катушечной группы в любой момент времени и в любой точке, удалённой от оси этой группы на расстояние x можно записать в виде
,
где .
Дата добавления: 2015-08-18; просмотров: 83 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
МДС катушки | | | МДС фазной обмотки |