Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Идеального газа

Читайте также:
  1. Давайте проанализируем наши аргументы в соответствии с критериями идеального бизнеса.
  2. Дальнейший очерк наилучшего (идеального) образа христианской жизни, составленный на основании различных мест свящ. Писания.
  3. Каскад реакторов идеального смешения, допущения модели, математическая модель для изотермического режима, методы расчета (аналитический и графический).
  4. Классификация тепловых режимов химических реакторов. Уравнение теплового баланса для реактора идеального смешения адиабатического.
  5. Краткий очерк наилучшего (идеального) образа жизни.
  6. Приметы идеального бизнеса
 

МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ

Атомы или молекулы, из которых состоит газ, свободно движутся на значительном удалении друг от друга и взаимодействуют только при соударениях друг с другом (далее, чтобы не повторяться, я буду упоминать только «молекулы», подразумевая под этим «молекулы или атомы»). Поэтому молекула движется прямолинейно лишь в промежутках между соударениями, меняя направление движения после каждого такого взаимодействия с другой молекулой. Средняя длина прямолинейного отрезка движения молекулы газа называется усредненным свободным путем. Чем выше плотность газа (и, следовательно, меньше среднее расстояние между молекулами), тем короче средний свободный путь между столкновениями.

Во второй половине XIX века столь простая внешне картина атомно-молекулярной структуры газов усилиями ряда физиков-теоретиков развилась в мощную и достаточно универсальную теорию. В основу новой теории легла идея о связи измеримых макроскопических показателей состояния газа (температуры, давления и объема) с микроскопическими характеристиками — числом, массой и скоростью движения молекул. Поскольку молекулы постоянно находятся в движении и, как следствие, обладают кинетической энергией, эта теория и получила название молекулярно-кинетической теории газов.

Возьмем, к примеру, давление. В любой момент времени молекулы ударяются о стенки сосуда и при каждом ударе передают им определенный импульс силы, который сам по себе крайне мал, однако суммарное воздействие миллионов молекул приводит к значительному силовому воздействию на стенки, которое и воспринимается нами как давление. Например, накачивая автомобильное колесо, вы перегоняете молекулы атмосферного воздуха внутрь замкнутого объема шины дополнительно к числу молекул, уже находящихся внутри нее; в результате концентрация молекул внутри шины оказывается выше, чем снаружи, они чаще ударяются о стенки, давление внутри шины оказывается выше атмосферного, и шина становится накачанной и упругой.

Смысл теории состоит в том, что по среднему свободному пути молекул мы можем рассчитать частоту их столкновений со стенками сосуда. То есть, располагая информацией о скорости движения молекул, можно рассчитать характеристики газа, поддающиеся непосредственному измерению. Иными словами, молеку-лярно-кинетическая теория дает нам прямую связь между миром молекул и атомов и осязаемым макромиром.

То же самое касается и понимания температуры в рамках этой теории. Чем выше температура, тем больше средняя скорость молекул газа. Эта взаимосвязь описывается следующим уравнением:

\l2mv1 = КГ,

где т — масса одной молекулы газа, V — средняя скорость теплового движения молекул, Т — температура газа (в Кельвинах),

 

Максвелл показал, что молекулы в газе имеют различные скорости: одни движутся быстрее, а другие медленнее средней скорости

 

а к — постоянная больцмана. Основное уравнение молекулярно-кинетической теории определяет прямую связь между молекулярными характеристиками газа (слева) и измеримыми макроскопическими характеристиками (справа). Температура газа прямо пропорциональна квадрату средней скорости движения молекул.

Молекулярно-кинетическая теория также дает достаточно определенный ответ на вопрос об отклонениях скоростей отдельных молекул от среднего значения. Каждое столкновение между молекулами газа приводит к перераспределению энергии между ними: слишком быстрые молекулы замедляются, слишком медленные — ускоряются, что и приводит к усреднению. В любой момент в газе происходят несчетные миллионы таких столкновений. Тем не менее выяснилось, что при заданной температуре газа, находящегося в стабильном состоянии, среднее число молекул, обладающих определенной скоростью V или энергией Е, не меняется. Происходит это потому, что со статистической точки зрения вероятность того, что молекула с энергией Е изменит свою энергию и перейдет в близкое энергетическое состояние, равна вероятности того, что другая молекула, наоборот, перейдет в состояние с энергией Е. Таким образом, хотя каждая отдельно взятая молекула обладает энергией Е лишь эпизодически, среднее число молекул с энергией Е остается неизменным. (Аналогичную ситуацию мы наблюдаем в человеческом обществе. Никто не остается семнадцатилетним дольше одного года — и слава богу! — однако в среднем процент семнадцатилетних в стабильном человеческом сообществе остается практически неизменным.)

Эта идея усредненного распределения молекул по скоростям и ее строгая формулировка принадлежит Джеймсу Кларку Максвеллу. Этому же выдающемуся теоретику принадлежит и строгое описание электромагнитных полей (см. уравнения максвелла). Именно он вывел распределение молекул по скоростям при заданной температуре (см. рисунок). Больше всего молекул пребывают в энергетическом состоянии, соответствующем пику распределения Максвелла и средней скорости, однако фактически скорости молекул варьируются в достаточно больших пределах.

 


Дата добавления: 2015-08-18; просмотров: 59 | Нарушение авторских прав


Читайте в этой же книге: КРУГОВОРОТ ВОДЫ В ПРИРОДЕ | ГИПОТЕЗА ГЕИ | В природе | Гипотеза геи | ТЕОРИЯ ЭВОЛЮЦИИ | ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ | ЗЕЛЕНАЯ РЕВОЛЮЦИЯ | ТЕКТОНИКА ПЛИТ | ЗАКОН ШАРЛЯ | ИММУННАЯ СИСТЕМА |
<== предыдущая страница | следующая страница ==>
СИМБИОЗ| Генетический код

mybiblioteka.su - 2015-2025 год. (0.007 сек.)