Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Форма атомов и состав периодической системы химических элементов

Читайте также:
  1. B.105 Оценка долгосрочной запаздывающей деформации
  2. I. Определение информатики и информации.
  3. I. Состав суда и время собраний
  4. I. Составление грамот
  5. I. Составьте программу мероприятий для понижения уровня преступности среди несовершеннолетних.
  6. II. Основные направления налоговой политики и формирование доходов бюджетной системы
  7. III. Информационно-коммуникационные технологии

Скажем сразу: состав устойчивых изотопов периодической системы химических элементов обусловлен, в конечном итоге, овалоидной формой атомов.

Кто-нибудь видел квадратную ягоду, например, арбуз? Природа этого не допускает. Капли воды принимают сферическую или близкую к ней форму за счет поверхностного натяжения. Поверхностное натяжение атомов, структурно состоящих из нейтронов, на четыре порядка выше, чем поверхностное натяжение воды. Не на 4 процента, не в 4 раза, а на 4 порядка: поэтому трудно представить, чтобы форма атомов была бы иной, чем сферическая или близкая к ней – овалоидная.

Поверхностное натяжение создается электростатическим взаимодействием нейтронов в атоме, как это описано в первой части книги, одинаковым со всех сторон атома симметрично относительно центра. Это и является причиной сферичности атома. Кроме того, из-за электродинамического взаимодействия между собой атомы находятся в колебательном и вращательном (в жидкостях и газах) движении внутри своих глобул. Вращательное движение требует тщательной балансировки атомов и молекул во избежание их разрушения под действием центробежных сил, в том числе, и твердых веществ, которые, все без исключения, бывают также в жидком и газообразном состояниях. Еще и поэтому атомы должны принимать форму вращения: сферическую, эллипсоидную или, в общем случае – овалоидную.

Согласно разработанной и изложенной в разделе о катализе простой методике количество нейтронов в однослойной сфере определяется отношением площади поверхности, занимаемой всеми нейтронами, к площади поверхности, занимаемой одним нейтроном.

При этом для существования сферы необходимо, чтобы количество нейтронов в слое и его диаметральном сечении было целочисленным. Именно эти два условия определяют состав устойчивых изотопов химических элементов, в частности, в Земных условиях. При отклонении числа нейтронов от их расчетного количества в сфере, атом принимает форму эллипсоида вращения или, в общем случае – овалоида; условия целочисленности количества нейтронов в слое и его диаметральном сечении и в этом случае должны обязательно быть выполненными, так как при дробном количестве нейтронов сфера или овалоид не могут устойчиво существовать.

Расчет и анализ показывают, что сферических атомов немного – всего тринадцать: однослойные – 12C, 20Ne, 28Si, 40Ar, 48Ti; двухслойные – 59Co, 74Ge, 84Kr, 106Pd, 132Xe; трехслойные – 180Hf, 195Pt, 222Rn. Многослойность атомов объясняется тем, что громадные электростатические силы поверхностного натяжения стремятся заполнить весь объем внутренней полости как только это становится возможным: когда в полости может разместиться хотя бы минимальная сфера 12C.

Остальные, не сферические, атомы, кроме атомов с атомным числом A<12, являются овалоидами с целым числом нейтронов в каждом слое: однослойные – с 14N по 52Cr; двухслойные – с 55Mn по 139La; трехслойные – с 181Ta и далее (до A<260).

Сферические атомы концентрируются в четвертой и восьмой группах, формируя определенную периодичность изменения свойств элементов. В частности элементы со сферическими и близкими к ним по форме атомами являются катализаторами, как наиболее прочные.

Устойчивые изотопы находятся в равновесии с действием полей (магнитное, гравитационное…) Земли; неустойчивые за определенное время становятся устойчивыми, распадаясь или достраиваясь до них. Причем оба этих процесса находятся в динамическом равновесии друг с другом аналогично, например, хорошо изученным процессам испарения – конденсации на поверхности воды /1/.


Литература

1.Андреев Е.И. Расчет тепло- и массообмена в контактных аппаратах. Л.: Энергоатомиздат, 1985.

2.Андреев Е.И. Механизм тепломассообмена газа с жидкостью. СПб.: Энергоатомиздат, 1990.

3.Базиев Д.Х. Основы единой теории физики. М.: Педагогика, 1994. С. 640.

4.Базиев Д.Х. Электричество Земли. М.: Коммерческие технологии, 1997.

5.Базиев Д.Х. Гиперчастотная теория кавитации. М.: Коммерческие технологии, 1999.

6.Бугаец Е.С. Свеча зажигания из космоса. Еженедельник «24 часа», № 39, 1999.

7.Беклемишев Ю.А., Беклемешева Г.Ю. Новое направление в энергетике. Материалы межд. конф. «Новые идеи в естествознании», СПб., 1996. С. 311–314.

8.Габович М.Д. Физика и техника плазменных источников ионов. М.: Атомиздат, 1972.

9.Глинка Н.Л. Общая химия. Л.: Химия, 1977. С. 183.

10. Канарев Ф.М. Вода – новый источник энергии. Краснодар, ГКАУ, 1999.

11. Колдамасов А.И. Ядерный синтез в поле электрического заряда. Материалы межд. конф. «Новые идеи в естествознании», СПб., 1996.

12. Макаров В. Летающие тарелки движет термояд. Еженедельник «24 часа», № 8, 1999.

13. Орир Дж. Физика. М.: Мир, 1981.

14. Пруссов П.Д. Явления эфира. Т. 1–4. Николаев: РИП Рионика, 1992–1994.

15. Смирнов А.П. Кризис современной физики. СПб.: Издательство «ПиК», 1999.

16. Сборник клуба ФЕНИД. Вып. 1, 1990.

17. Шахпаронов, И.М. Материалы межд. конф. «Новые идеи в естествознании», СПб., 1996. C. 176–187.

18. Отчет по результатам сравнительных испытаний электрических теплогенераторов типа ЮСМАР-1, ЭВП-03, ВЭО-15 и КТП для автономных нагревательных устройств. РКК «ЭНЕРГИЯ», М., 1997.

19. Патент РФ 2054604, 1996. Бюл. 5. Способ получения энергии / А.Ф. Кладов.

20. А. с. СССР 334405, 1970; Бюл. 12, 1972. Гидродинамическая установка для кавитационных испытаний / А.И. Колдамасов, В.А. Сударушкин.

21. Патент РФ 2045715, 1993 (опубл. 1995). Теплогенератор и устройство для нагрева жидкости. / Ю.С.Потапов.

22. Патент Украины 7205 А, 1997. Тепловой преобразователь мощности. / ЗАО «Энергоресурс», Донецк..

23. Патент РФ 2179649, 2000. Способ повышения энергии рабочей среды для получения полезной работы / Е.И. Андреев, А.П. Смирнов, Р.А. Давыденко.


 


Дата добавления: 2015-08-05; просмотров: 117 | Нарушение авторских прав


Читайте в этой же книге: Кавитация как возбудитель ядерной реакции | Дисковые ультразвуковые теплогенераторы | Виброрезонансные установки | Электрогидравлические установки | Электрические генераторы | Приложение 3 | Электрические заряды и их взаимодействие | Физическая природа гравитации | Система основных частиц материи | Особенности фазовых переходов вещества |
<== предыдущая страница | следующая страница ==>
Закономерности дискретных процессов| Введение

mybiblioteka.su - 2015-2024 год. (0.007 сек.)