Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

The law of total probability

Читайте также:
  1. Areas under continuous probability density functions
  2. Compute the required probability using the normal distribution.
  3. Conditional probability
  4. Formula for classical probability
  5. Probabilities for the exponential probability distribution.
  6. Probability and its postulates
  7. Probability rules

Theorem:

Let B be an event with and . Then for any event A,

.

Example:

An urn contains 10 white and 6 red balls. Two balls are selected at random without replacement. What is the probability that second selected ball is red?

Solution:

Let A be the event that second selected ball is red, B be event that the first ball is white. Then , , , . Then by the law of total probability:

= .

Theorem:

Let be a set of nonempty, mutually exclusive subsets of the sample space S and for then for any event

A of S,

.

Example:

Suppose that 70% of seniors, 60% of juniors, 55% of the sophomores, and 40% of the freshmen of a university use the library frequently. If 35% of all students are freshmen, 30% are sophomores, 20% are juniors, and 15% are seniors, what percent of all students use the library frequently?

Solution:

Let A be the event that a randomly selected student is using library frequently. Let F, O, J, and E be the events that he or she is a freshmen, sophomore, junior, or senior respectively. Thus

.

Therefore, 53% of these students use the library frequently.

 


Дата добавления: 2015-08-05; просмотров: 62 | Нарушение авторских прав


Читайте в этой же книге: Consequences of the postulates | Exercises | Counting principle. Permutation and combination | Permutation | Exercises | Probability rules | Exercises | Conditional probability | The multiplication rule of probability | Multiplication rule for independent events |
<== предыдущая страница | следующая страница ==>
Exercises| Exercises

mybiblioteka.su - 2015-2024 год. (0.009 сек.)