Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Measures of dispersion for ungrouped data

In statistics, in order to describe the data set accurately statisticians must know more than measures of central tendency. Two data sets with the same mean may have completely different spreads. The variation among values of observations for one data set may be much larger or smaller than for the other data set.

Remark:

The words dispersion, spread, and variation have the same meaning.

Example:

Consider the following two samples:

Sample1: 66, 66, 66, 67, 67, 67, 68, 69

Sample2: 43, 44, 50, 54, 67, 90, 91, 97

The mean of sample1 is

The mean of sample2 is .

Each of these samples has a mean equal to 67. However, the dispersion of the observations in the two samples differs greatly. In the first sample all observations are grouped within 2 units of the mean. Only one observation (67) is closer than 13 units to the mean of the second sample, and some are as far away as 30 units. Thus, the mean, median, or mode is usually not by itself a sufficient measure to reveal the shape of the distribution of a data set. We also need a measure that can provide some information about the variation among data values. The measures that help us to know about the spread of data set are called the measures of dispersion. The measures of central tendency and dispersion taken together give a better picture of a data set than measure of central tendency alone. Several quantities that are used as measures of dispersion are the range, the mean absolute deviation, the variance, and the standard deviation.

 

Range

The simplest measure of variability for a set of data is the range.

Definition:

The range for a set of data is the difference between the largest and smallest values in the set.

Range=Largest value-Smallest value

Example:

Find the range for the sample observations

13, 23, 11, 17, 25, 18, 14, 24

Solution:

We see that the largest observation is 25 and the smallest observation

is 11. The range is 25-11=14.

Example:

A sample is composed of the observations

67, 79, 87, 97, 93, 57, 44, 80, 47, 78, 81, 90, 88, 91

Find the range.

Solution:

The largest observation is 97; the smallest observation is 44.

The range is .

 


Дата добавления: 2015-08-05; просмотров: 87 | Нарушение авторских прав


Читайте в этой же книге: Международные сопоставления | Неденежные операции | Производство домашними хозяйствами | Границы активов | Конечное потребление, промежуточное потребление и валовое накопление основного капитала | Использование микроданных для разработки макроэкономических показателей | F. Связь с бухгалтерским учетом | G. Расширение областей, охватываемых СНС | The mean | The median |
<== предыдущая страница | следующая страница ==>
The Mode| The mean absolute deviation

mybiblioteka.su - 2015-2024 год. (0.005 сек.)