Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Волоконно-оптические усилители.

 

Практический успех технологии DWDM, оборудование которой уже работает магистралях многих ведущих мировых операторов связи, во многом определило появление волоконно-оптических усилителей. Эти оптические устройства непо­средственно усиливают световые сигналы в диапазоне 1550 нм, исключая необ­ходимость промежуточного преобразования их в электрическую форму, как это делают регенераторы, применяемые в сетях SDH. Системы электрической реге­нерации сигналов весьма дороги и, кроме того, зависят от протокола, так как они должны воспринимать определенный вид кодирования сигнала. Оптические усилители, «прозрачно» передающие информацию, позволяют наращивать ско­рость магистрали без необходимости модернизировать усилительные блоки.

Протяженность участка между оптическими усилителями может достигать 150 км и более, что обеспечивает экономичность создаваемых магистралей DWDM,в которых длина мультиплексной секции составляет на сегодня 600-3000 км при применении от 1 до 7 промежуточных оптических усилителей.

В рекомендации ITU-T G.692 определены три типа усилительных участков, то есть участков между двумя соседними мультиплексорами DWDM:

□ L (Long) — участок состоит максимум из 8 пролетов волоконно-оптических линий связи и 7 оптических усилителей, максимальное расстояние между уси­лителями — до 80 км при общей максимальной протяженности участка 640 км;

□ V (Very long) — участок состоит максимум из 5 пролетов волоконно-оптиче­ских линий связи и 4 оптических усилителей, максимальное расстояние меж­ду усилителями — до 120 км при общей максимальной протяженности участ­ка 600 км;

□ U (Ultra long) — участок без промежуточных усилителей длиной до 160 км.

Ограничения на количество пассивных участков и их длину связаны с деграда­цией оптического сигнала при его оптическом усилении. Хотя оптический уси­литель восстанавливает мощность сигнала, он не полностью компенсирует эф­фект хроматической дисперсии (то есть распространения волн разной длины с разной скоростью, из-за чего сигнал на приемном конце волокна «размазывает­ся»), а также другие нелинейные эффекты. Поэтому для построения более протя­женных магистралей необходимо между усилительными участками устанавливать DWDM-мультиплексоры, выполняющие регенерацию сигнала путем его преобра­зования в электрическую форму и обратно. Для уменьшения нелинейных эффек­тов в системах DWDM применяется также ограничение мощности сигнала.

Оптические усилители используются не только для увеличения расстояния ме­жду мультиплексорами, но и внутри самих мультиплексоров. Если мультиплек­сирование и кросс-коммутация выполняются исключительно оптическими сред­ствами, без преобразования в электрическую форму, то сигнал при пассивных оптических преобразованиях теряет мощность и его нужно усиливать перед пе­редачей в линию.

Новые исследования привели к появлению усилителей, работающих в' так назы­ваемом L-диапазоне (4-е окно прозрачности), от 1570 до 1605 нм. Использова­ние этого диапазона, а также сокращение расстояния между волнами до 50 ГГц и 25 ГГц позволяет нарастить количество одновременно передаваемых длин волн до 80-160 и более, то есть обеспечить передачу трафика со скоростями 800 Гбит/с-1,6 Тбит/с в одном направлении по одному оптическому волокну. С успехами DWDM связано еще одно перспективное технологическое направление — пол­ностью оптические сети. Б таких сетях все операции по мультиплексирова­нию/демультиплексированию, вводу-выводу и кросс-коммутации (маршрутиза­ции) пользовательской информации выполняются без преобразования сигнала из оптической формы в электрическую. Исключение преобразований в электри­ческую форму позволяет существенно удешевить сеть. Однако возможности оп­тических технологий пока еще недостаточны для создания полностью опти­ческих масштабных сетей, поэтому их практическое применение ограничено фрагментами, между которыми выполняется электрическая регенерация сигнала.


Дата добавления: 2015-08-05; просмотров: 107 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Принципы работы| Типовые топологии

mybiblioteka.su - 2015-2024 год. (0.005 сек.)