|
Практический успех технологии DWDM, оборудование которой уже работает магистралях многих ведущих мировых операторов связи, во многом определило появление волоконно-оптических усилителей. Эти оптические устройства непосредственно усиливают световые сигналы в диапазоне 1550 нм, исключая необходимость промежуточного преобразования их в электрическую форму, как это делают регенераторы, применяемые в сетях SDH. Системы электрической регенерации сигналов весьма дороги и, кроме того, зависят от протокола, так как они должны воспринимать определенный вид кодирования сигнала. Оптические усилители, «прозрачно» передающие информацию, позволяют наращивать скорость магистрали без необходимости модернизировать усилительные блоки.
Протяженность участка между оптическими усилителями может достигать 150 км и более, что обеспечивает экономичность создаваемых магистралей DWDM,в которых длина мультиплексной секции составляет на сегодня 600-3000 км при применении от 1 до 7 промежуточных оптических усилителей.
В рекомендации ITU-T G.692 определены три типа усилительных участков, то есть участков между двумя соседними мультиплексорами DWDM:
□ L (Long) — участок состоит максимум из 8 пролетов волоконно-оптических линий связи и 7 оптических усилителей, максимальное расстояние между усилителями — до 80 км при общей максимальной протяженности участка 640 км;
□ V (Very long) — участок состоит максимум из 5 пролетов волоконно-оптических линий связи и 4 оптических усилителей, максимальное расстояние между усилителями — до 120 км при общей максимальной протяженности участка 600 км;
□ U (Ultra long) — участок без промежуточных усилителей длиной до 160 км.
Ограничения на количество пассивных участков и их длину связаны с деградацией оптического сигнала при его оптическом усилении. Хотя оптический усилитель восстанавливает мощность сигнала, он не полностью компенсирует эффект хроматической дисперсии (то есть распространения волн разной длины с разной скоростью, из-за чего сигнал на приемном конце волокна «размазывается»), а также другие нелинейные эффекты. Поэтому для построения более протяженных магистралей необходимо между усилительными участками устанавливать DWDM-мультиплексоры, выполняющие регенерацию сигнала путем его преобразования в электрическую форму и обратно. Для уменьшения нелинейных эффектов в системах DWDM применяется также ограничение мощности сигнала.
Оптические усилители используются не только для увеличения расстояния между мультиплексорами, но и внутри самих мультиплексоров. Если мультиплексирование и кросс-коммутация выполняются исключительно оптическими средствами, без преобразования в электрическую форму, то сигнал при пассивных оптических преобразованиях теряет мощность и его нужно усиливать перед передачей в линию.
Новые исследования привели к появлению усилителей, работающих в' так называемом L-диапазоне (4-е окно прозрачности), от 1570 до 1605 нм. Использование этого диапазона, а также сокращение расстояния между волнами до 50 ГГц и 25 ГГц позволяет нарастить количество одновременно передаваемых длин волн до 80-160 и более, то есть обеспечить передачу трафика со скоростями 800 Гбит/с-1,6 Тбит/с в одном направлении по одному оптическому волокну. С успехами DWDM связано еще одно перспективное технологическое направление — полностью оптические сети. Б таких сетях все операции по мультиплексированию/демультиплексированию, вводу-выводу и кросс-коммутации (маршрутизации) пользовательской информации выполняются без преобразования сигнала из оптической формы в электрическую. Исключение преобразований в электрическую форму позволяет существенно удешевить сеть. Однако возможности оптических технологий пока еще недостаточны для создания полностью оптических масштабных сетей, поэтому их практическое применение ограничено фрагментами, между которыми выполняется электрическая регенерация сигнала.
Дата добавления: 2015-08-05; просмотров: 107 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Принципы работы | | | Типовые топологии |