Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Стационарное движение идеальной жидкости, уравнение бернури,ВЯЗКОСТЬ, Течение вязкой жидкости по трубке. Уравнение Пуазейля

Читайте также:
  1. XXXIX. Воздвижение
  2. Автоматизация звука [С] в начале слов со стечением согласных
  3. БОГ — ВЕЧНОЕ ДВИЖЕНИЕ
  4. Больному с хроническим течением болезни
  5. В течение всего вечера звучит тихая, спокойная музыка
  6. Великое передвижение народов. Падение Западной империи
  7. Второе движение создаёт звёздный тетраэдр

Стационарное движение идеальной жидкости

Вследствие малой сжимаемости жидкости во многих случаях можно полностью пренебречь изменением ее объема, т.е. можно говорить об абсолютно несжимаемой жидкости.

Жидкость, в которой при любых движениях не возникают силы внутреннего трения, называют идеальной.

В идеальной жидкости могут существовать только силы нормального давления, которые можно вычислить с помощью уравнения состояния

Р=f(r, T).

Если жидкость находится в движении, то наряду с нормальным напряжением в ней могут возникнуть и касательные силы, которые определяются скоростью деформации жидкости, т.е. равны производным деформации по времени. Поэтому их относят к разряду сил трения, или вязкости. Работа, совершаемая силами давления при перемещении некоторой массы жидкости

 

Эта работа равна приращению полной энергии DW, рассматриваемого объема жидкости (закон сохранения энергии для стационарного движения жидкости).

Изменение полной энергии

  DW=(w2 - w1) Dm, (6.23)

где w1, w2 - полные энергии, приходящиеся на единицу массы жидкости до и после перемещения.

Решив (6.22) и (6.23), получим

  . (6.24)

Следовательно, при стационарном течении идеальной жидкости вдоль одной и той же линии тока, величина остается постоянной.

Уравнение Бернулли является одним из наиболее известных нелинейных дифференциальных уравнений первого порядка. Оно записывается в виде

где a (x) и b (x) − непрерывные функции

Если m = 0, то уравнение Бернулли становится линейным дифференциальным уравнением. В случае когда m = 1, уравнение преобразуется в уравнение с разделяющимися переменными.

В общем случае, когда m ≠ 0, 1, уравнение Бернулли сводится к линейному дифференциальному уравнению с помощью подстановки

Новое дифференциальное уравнение для функции z (x) имеет вид

и может быть решено способами, описанными на странице Линейные дифференциальные уравнения первого порядка.

Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Пусть вязкая несжимаемая жидкость течет вдоль прямоли­нейной цилиндрической трубы радиуса R. Линии тока параллельны оси трубы. Если выделить произвольную бесконечно узкую трубку тока, то из условия несжимаемости следует, что скорость течения v будет одна и та же вдоль всей трубки тока — скорость жидкости не может меняться вдоль трубы. Но она, конечно, может изменяться с изменением расстояния r от оси трубы. Таким образом, скорость жидкости v является функцией радиуса r.

Формула пуазейля

 


Дата добавления: 2015-08-03; просмотров: 190 | Нарушение авторских прав


Читайте в этой же книге: Силы. Первый закон Ньютона и понятие инерциальной системы отсчеnf | Второй закон Ньютона. Виды сил в механике. Основная задача динамики. | Третий закон Ньютона | Система взаимодействующих тел. Внешние и внутренние силы. Закон сохранения импульса для взаимодействующих между собой тел. | Цен. маcс. Тeop. o движ. цен. мacc. | Моменты импульса и силы относительно точки и неподвижной оси . Уравнение моментов для системы материальных точек. | Гармонические колебания . Амплитуда , круговая частота . Фаза гармонических колебаний. Векторные диаграммы . Комплексная форма представления колебаний .Сложение колебаний | Сложение гармонических колебаний | Уравнение гармонических колебаний | Фазовые превращения.испарение и конденсация.плавление и кристаллизация |
<== предыдущая страница | следующая страница ==>
Свойства сил инерции| Одномерное пространство

mybiblioteka.su - 2015-2024 год. (0.007 сек.)