Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Двадцатеричная система счисления индейцев Майя или долгий счет

Читайте также:
  1. III. Систематизированные Исторические ДАННЫЕ [1] по ЭТРУСКАМ
  2. А.5 Случайные и систематические изменения качества воды
  3. Автоматизированная система управления производством для машиностроительного предприятия
  4. Аденилатциклазная система.
  5. Американцы отбивают у индейцев Огайо 1 страница
  6. Американцы отбивают у индейцев Огайо 2 страница
  7. Американцы отбивают у индейцев Огайо 3 страница

Эта система очень интересна тем, что на ее развитие не повлияла ни одна из цивилизаций Европы и Азии. Эта система применялась для календаря и астрономических наблюдений. Характерной особенностью ее было наличие нуля (изображение ракушки). Основанием этой системы было число 20, хотя сильно заметны следы пятеричной системы. Первые 19 чисел получались путем комбинирование точек (один) и черточек (пять).

У индейцев Майя 20 дней-кинов образовывали месяц или уинал. 18 месяцев-уиналов образовывали год или туну (360 дней в году) и так далее:

К'ин = 1 день. Виналь = 20 к'ин = 20 дней. Тун = 18 виналь = 360 дней = около 1 года. К'атун = 20 тун = 7200 дней = около 20 лет. Бак'тун = 20 к'атун = 144000 дней = около 400 лет. Пиктун = 20 бак'тун = 2880000 дней = около 8000 лет. Калабтун = 20 пиктун = 57 600 000 дней = около 160000 лет. К'инчильтун = 20 калабтун = 1152000000 дней = около 3200000 лет. Алавтун = 20 к'инчильтун = 23040000000 дней = около 64000000 лет.

Рисунок 13 - Пример обозначения количества дней

Это довольно сложная система счисления, в основном использовалась жрецами для астрономических наблюдений, другая система индейцев Майя была аддитивной, похожей на египетскую и применялась в повседневной жизни.

4. История «арабских» чисел

История наших привычных «арабских» чисел очень запутана. Нельзя сказать точно и достоверно, как они произошли. Вот один из вариантов этого истории этого происхождения. Одно точно известно, что именно благодаря древним астрономам, а именно их точным расчетам мы и имеем наши числа.

Как мы уже знаем, в вавилонской системе счисления присутствует знак для обозначения пропущенных разрядов. Примерно во II веке до н.э. с астрономическими наблюдениями вавилонян познакомились греческие астрономы (например, Клавдий Птолемей). Они переняли их позиционную систему счисления, но целые числа они записывали не с помощью клиньев, а в своей алфавитной нумерации, а дроби в вавилонской шестидесятеричной системой счисления. Но для обозначения нулевого значения разряда греческие астрономы стали использовать символ "0" (первая буква греческого слова Ouden - ничто).

Между II и VI веками н.э. индийские астрономы познакомились с греческой астрономией. Они переняли шестидесятеричную систему и круглый греческий нуль. Индийцы соединили принципы греческой нумерации с десятичной мультипликативной системой взятой из Китая. Так же они стали обозначать цифры одним знаком, как было принято в древнеиндийской нумерации брахми. Это и был завершающий шаг в создании позиционной десятичной системы счисления.

Блестящая работа индийских математиков была воспринята арабскими математиками и Аль-Хорезми в IX веке написал книгу "Индийское искусство счета", в которой описывает десятичную позиционную систему счисления. Простые и удобные правила сложения и вычитания сколь угодно больших чисел, записанных в позиционной системе, сделали ее особенно популярной в среде европейских купцов.

В XII в. Хуан из Севильи перевел на латынь книгу "Индийское искусство счета", и индийская система счета широко распространилась по всей Европе. А так как труд Аль-Хорезми был написан арабском языке, то за индийской нумерацией в Европе закрепилось неправильное название - "арабская". Но сами арабы именуют цифры индийскими, а арифметику, основанную на десятичной системе - индийским счетом.


Дата добавления: 2015-08-03; просмотров: 272 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Простая система счисления| История нуля

mybiblioteka.su - 2015-2025 год. (0.011 сек.)