Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

О смысле чисел 3 страница

Читайте также:
  1. Bed house 1 страница
  2. Bed house 10 страница
  3. Bed house 11 страница
  4. Bed house 12 страница
  5. Bed house 13 страница
  6. Bed house 14 страница
  7. Bed house 15 страница

шествующее развитие — продолжала развиваться дальше логическим и широким движением, отдельные подробности которого остаются для нас неизвестными, и достигла своего завершения в эпоху Абассидов, около IX столетия, как это видно по уровню знаний у Альхваризми и Альсидшзи. И только опять по истечении целых пятисот лет, в совершенно новых, отдаленных странах, начинается новый величественный процесс перетолкования магического мира чисел, переданного нам испанскими арабами, в функциональный мир чисел Западной Европы, начинается мощное сопротивление против надвигающегося чуждого мирочувствования с его внутренне достигшим зрелости истолкованием пространства; юная готическая душа была вынуждена бороться против этого чуждого элемента и сломить его, чтобы сохранить свое подлинное, собственное, следствием чего явилась борьба во всех архитектурах, в каждом фасаде, каждом орнаменте, каждом символе, каждой метафизической и математической проблеме, та борьба, чье немое величие ни разу еще никем не было прочувствовано.

Какое значение рядом с Эвклидовой геометрией имеет аттическая пластика — равнозначащий язык форм в ином одеянии — или рядом с анализом пространства фугированный стиль инструментальной музыки, то же значение рядом с восточной алгеброй имеют магическое искусство мозаик, сассанидское искусство арабесок, позднее еще с большей пышностью развитое Византией, с его чувственно-отвлеченным слиянием мотивов органических форм, и, наконец, барельефы Константиновского стиля с их смутными тенями глубин оставленного свободным между изваянными фигурами фона. Как относится алгебра к античной арифметике и западноевропейскому анализу, так же относится купольная базилика к дорическому храму и готическому собору.

Диофант совсем не был великим математиком. Большей

части того, что связывается с его именем, мы не найдем в его

писаниях, а то, что там находится, конечно, не является его исключительной собственностью. Его случайное значение основано на том, что у него у первого, насколько нам известно, выступает с полной несомненностью это новое чувство чисел. По сравнению с мастерами, работавшими над завершением какой-либо математики, как, например, Аполлоний и Архимед в области античной и соответственно Гаусс, Коши, Риман в области западноевропейской математики, мы находим у Диофанта и Менелая что-то примитивное, что обыкновенно до

 

 

сих пор обозначали как декадентство. Со временем мы научимся лучше понимать и ценить это явление — подобно тому, как с недавнего времени перестают относиться презрительно к мнимому позднеантичному искусству, рассматривая его как попытку выражения только что нарождающегося раннеарабского мироощущения. Такой же архаической, примитивной и ищущей представляется математика Николая Оресмского, епископа г. Лизье (с 1323 по 1382 г.), применившего в первый раз на Западе свободный вид координат и даже степени с дробными показателями, указующие на несомненно новое, хотя еще неясное чувство чисел, совершенно не античное, но также отличное и от арабского. Если припомним, что рядом с Диофантом стоят раннехристианские саркофаги римских собраний, а рядом с Николаем Оресмским готические одетые статуи немецких соборов, то, несомненно, в обоих примерах хода математической мысли, отражающих одинаково раннюю ступень развития интеллекта, мы найдем нечто родственное. Стереометрическое чувство предела, достигшее у Архимеда высшей степени утонченности и элегантности, было утрачено. Преобладало смутное, устремленное к далекому, мистическое настроение, не имевшее ничего общего с аттической ясностью и свободой. Перед нами рожденные самой землей люди молодой страны, а не жители большого города, как Эвклид или д'Аламбер *. Глубокие и сложные образования античного мышления сделались непонятными, на место их выступили смутные и новые, для которых еще не найдена была ясная, по-городскому — интеллектуальная формулировка. Таково готическое состояние всякой юной культуры, пройденное также и античностью в раннедорическую эпоху, от которой ничего не осталось, кроме погребальных ваз дипилоновского стиля. Только в IX и Х вв. в Багдаде концепции эпохи Диофанта получили окончательную разработку и достигли завершения благодаря трудам зрелых мастеров, не уступающих по значению Платону и Гауссу.

 

 

Решающая роль деятельности Декарта, чья геометрия поя-

вилась в 1637 г., заключалась не в установлении нового метода или новых воззрений в области традиционной геометрии,

* Во II в. по Р.X. Александрия перестает быть мировым городом и превращается в сохранившуюся от времени античной цивилизации массу домов, в которых обитает примитивно чувствующее, душевно иначе устроенное население. Об этом феномене мы скажем позднее.

 

 

как это принято говорить, но в окончательной концепции но-

вой идеи числа, выразившейся в освобождении геометрии от

оптических приемов конструкции и вообще от измеренных

или измеряемых расстояний. Таким образом получил свое

осуществление анализ бесконечного. Неподвижная, так называемая картезианская система координат, идеальный представитель измеримых величин в полуэвклидовском смысле, имевшая еще значение в предшествующий период, как, например, у Николая Оресмского, была не столько закончена благодаря Декарту, но, если заглянуть глубже в его рассуждения, совершенно преодолена им. Его современник Ферма был последним представителем старой классической теории.

Вместо чувственного элемента конкретного отрезка прямой линии и поверхности — специфического выражения античного чувства предела — появляется элемент отвлеченно-пространственный и таким образом совершенно не античный элемент точки, характеризуемой отныне как группа сопряженных чистых чисел. Декарт разрушил литературно унаследованное понятие величины, чувственных размеров и заменил его изменяющейся значимостью отношений положения в пространстве. Однако упускают из вида, что это было равносильным упразднению геометрии вообще, которая с того времени среди мира чисел анализа ведет только призрачное существование, завуалированное античными реминисценциями. В слово «геометрия» вложен неустраняемый аполлоновский смысл. После Декарта так называемая "новая геометрия" превратилась или в синтетический процесс, определяющий посредством чисел положение точек в каком-нибудь пространстве, притом не обязательно трехмерном (в некоторой "множественности точек"), или в аналитический процесс, определяющий числа положением точек. Заменять отрезки прямой положениями — значит воспринимать понятие протяженности чисто пространственно, но уже не телесно.

Классическим примером этого разрушения принятой по

наследству оптически-конечной геометрии, по моему мнению,

является обращение круговых функций, имевших в индийской математике в совершенно малопонятном для нас смысле значение чисел — в циклометрические функции и дальнейшее их разрешение в ряды, утратившие в бесконечной числовой области алгебраического анализа признаки даже самого отдаленного сходства с геометрическими образованиями в стиле Эвклида. Число л, так же как и основание натуральных логарифмов, создает в этой числовой области, повсюду вновь появляясь, отношения, разрушающие всякие границы прежней геометрии, тригонометрии и алгебры, не имеющие

 

 

ни арифметического, ни геометрического характера, при обращении с которыми притом никто более не думает ни о действительно нарисованных кругах, ни о действительном исчислении степеней.

 

 

Подобно тому, как античная душа в лице Пифагора около

54 г. выработала свою концепцию аполлоновского числа как

измеримой величины, западноевропейская душа в лице Декарта и его современников (Паскаля, Ферма, Дезарга) в точно соответствующую эпоху открыла идею числа, родившуюся из страстного фаустовского стремления к бесконечному. Число как чистая величина, привязанная к телесному наличию отдельных вещей, имеет параллелью число как чистое отношение. Если определять античный мир, космос, исходя из его внутреннего требования видимой границы, как исчисляемую сумму материальных предметов, то, со своей стороны, наше мирочувствование находит свое выражение в образе бесконечного пространства, в котором все видимое воспринимается как нечто обусловленное по отношению к чему-то безусловному, или даже, пожалуй, как действительность низшего порядка. Его символом является решающее, ни в какой другой культуре не встречающееся понятие функции. Функция не есть какое-то расширение одного из ранее имевшихся числовых понятий; она является их полным преодолением. Таким образом, не только эвклидовская, т. е. общечеловеческая популярная геометрия, но и архимедовская сфера элементарного счисления, т. е. арифметика, перестают существовать для действительной обладающей значением математики Западной Европы. Остается один отвлеченный анализ. Для античного человека геометрия и арифметика были научными комплексами высшего порядка, причем и та и другая были наглядными и обращались с величинами при помощи графических и счетных приемов; для нас они только практические пособия повседневной жизни. Сложение и умножение, эти два античных метода счисления величин, родственных графическому конструированию, совершенно исчезают в бесконечности функциональных процессов. Так, например, степени, по своему принципу являющиеся первоначально просто числовыми обозначениями определенных групп умножений (для множителей одинаковой величины), при посредстве нового символа показателя степени (логарифм) и способа его применения в комплексных, отрицательных и дробных формах становятся совершенно отрешенными от понятия величины и переносятся

 

в трансцендентальный мир отношений, который для грека,

знавшего только две целые степени в качестве изображения

поверхности и тела, является совершенно недоступным (стоит

только припомнить такие выражения, как е-?nvx, а1/ i).

Все глубокомысленные создания, быстро следующие одно

за другим, начиная с эпохи Ренессанса, как-то: мнимые и

комплексные числа, введенные Карданом уже в 1550 г., бес-

конечные ряды, получившие благодаря великому открытию

закона бинома Ньютоном в 1666 г. точное теоретическое

обоснование, открытие логарифмов в 1610 г., дифференцильной геометрии, определенного интеграла Лейбницем, открытие множества как новой числовой единицы, намеченное уже Декартом, новые процессы, как-то: неопределенного интегрирования, развертывание функций в ряды, даже в бесконечные ряды других функций, — все они являются столькими же победами над укоренившимся в нашей душе популярно-чувственным ощущением чисел, которое нужно еще было преодолеть в духе новой математики, имевшей своей целью осуществить новое мирочувствование. Не было еще ни одной другой культуры, которая относилась бы с равным уважением к созданиям иной, давно погибшей культуры и давала такой простор в своей науке ее влияниям, как это делала западноевропейская по отношению к античной. Прошло много времени, пока мы нашли в себе смелость думать своим умом. На первом плане всегда лежало стремление во всем сравняться с античностью. Однако каждый шаг в этом направлении был удалением от намеченного идеала. Поэтому история западноевропейской науки представляет собою картину непрерывной эмансипации от чуждого и освобождения, к которому никто не стремился, но которое вынужденно вырастало из глубины бессознательного. Таким образом, развитие новой математики сложилось в тайную, долгую, наконец, победоносную борьбу против понятия величины.

 

 

Антикизирующие предрассудки помешали подобающим

образом изобразить западноевропейское число. Усвоенный на-

ми в математике язык знаков ложно отражает действительное

положение вещей, и ему, главным образом, приходится при-

писать то обстоятельство, что даже до настоящего времени

среди математиков распространено воззрение, будто числа

суть величины, а наш способ письменного изображения, несомненно, основан на этой точке зрения.

 

Однако новое число есть не эти отдельные знаки, служащие для выражения функций (х,? 5), но сами функции как

единицы, как элементы, как изменяющиеся отношения, не

допускающие никакого заключения в оптические границы.

Для них была бы нужна новая символика, независимая в своем построении от античных воззрений.

Стоит уяснить себе существенную разницу двух уравнений — так, гетерогенные вещи не следовало бы даже обозначать одинаковым именем, — как следующие: 3x + 4 x = 5 x и x x +y x = z x (уравнение Ферматовой теоремы). Первое состоит из нескольких "античных чисел" (величин), второе само по себе есть число особого рода, причем это обстоятельство затушевано идентичным способом начертания, развившегося под впечатлением эвклидовско-архимедовских представлений. В первом случае знак равенства устанавливает неподвижную связь между определенными, осязаемыми величинами, во втором он выражает отношение, существующее внутри группы изменяющихся образований, причем одни изменения безусловно влекут за собою другие. Первое уравнение имеет целью определение (измерение) конкретной величины, т. е. известное «решение», второе не преследует вообще никакого решения, но является изображением и знаком определенного отношения, исключающего при условии n › 2- в этом и заключается знаменитая Ферматова проблема — с доказуемой вероятностью значения, выражающиеся целыми числами. Греческий математик не понял бы, каков смысл этой операции, не имеющей конечной целью никакого "вычисления".

Понятие неизвестных, будучи применено к буквам Ферматова уравнения, вводит в полнейшее заблуждение. В первом уравнении, в «античном», х есть величина определенная и измеряемая, которую предстоит определить. Во втором, в применении к х, у, z, n слово «определять» не имеет никакого смысла, следовательно, имеется в виду отыскать «значение» этих символов, следовательно, они вообще не являются числами в пластическом смысле, но знаками для определенного отношения, лишенного признаков величины, формы и единой значимости, для бесконечного множества возможных положений одинакового характера, и эти возможности, воспринятые, как нечто единое, и есть число. В нашем способе

начертания, применяющем, к сожалению, многочисленные и

сбивающие с толку знаки, все это уравнение является в действительности одним числом, а х, у, z являются числом в такой же малой мере, как + или =.

Уже введение понятия иррациональных, в сущности своей совершенно антиэллинских чисел, в самой его основе

 

разрушило понятие конкретных, определенных чисел. С этого момента числа перестали быть обозримым рядом возрастающих, раздельных, пластических величин и превратились в непрерывность одного измерения, каждое сечение которой (выражаясь словами Дедекинда) представляет "число, едва ли по праву заслуживающее прежнее наименование". Для античного разумения между 1 и 3 существует только одно число, для западноевропейского — бесконечное множество. Наконец, вместе с введением в употребление мнимых (v-1= i) и комплексных чисел (изображаемых общей формулой а + bi), расширяющих линейную непрерывность до пределов в высшей степени трансцендентального образования числового тела (некоторая совокупность множества однородных элементов), каждое сечение которого представляет собою числовую плоскость, — некое бесконечное множество меньшей «мощности», вроде совокупности всех реальных чисел, — исчезли даже последние остатки антично-популярной осязаемости. Эти числовые плоскости, играющие начиная с Коши и Гаусса видную роль в теории функции, являются чисто умственными образованиями. Еще положительные иррациональные числа, как v2, могли быть усвоены античным числовым мышлением по крайней мере негативным путем, причем их не считали бы за числа, как??????? или?????? но выражения вида х + уi лежат по ту сторону всех возможностей античного мышления. На распространении арифметических законов на всю область комплекса, в пределах которого они имеют постоянную применимость, основана теория функций, отныне выражающая западноевропейскую математику во всей ее чистоте, причем все отдельные области ею поглощаются и в ней растворяются. Только таким образом эта математика становится вполне применимой к картине одновременно развивающейся динамической физике Запада, в то время как античная математика является точным коррелатом пластического мира отдельных предметов, изображенного в статической физике Аристотеля, представляющей собой научную интерпретацию античного космоса.

Классической эпохой этой математики барокко — в противоположность математике ионического стиля — является XVIII век; она начинается с решительных открытий Ньютона и Лейбница, и через Эйлера, Лагранжа, Лапласа и д'Аламбера простирается до Гаусса. Расцвет этого великого создания мысли был похож на чудо. Едва решались верить тому, что видели. Открывали истины за истинами, казавшиеся проницательным умам скептически настроенной эпохи невозможными. Такое значение имеют слова д'Аламбера: "Allez en

 

 

avant et la foi vous viendra". Они касались теории дифференциальных дробей. Казалось, сама логика восстает против этого, казалось, все предположения основаны на ошибках, и все же цель была достигнута.

Это столетие восторженного опьянения одухотворенными, недоступными телесному глазу формами, — ведь рядом с

упомянутыми мастерами анализа стоят Бах, Глюк, Гайдн и Моцарт, причем упивался этими утонченными открытиями и

игрой форм только небольшой круг избранных, куда не имели доступа ни Гёте, ни Кант, — вполне соответствует по своему содержанию столетию зрелости ионической эпохи, столетию Платона, Архита и Евдокса (450–350 гг.) — и опять следует прибавить Фидия, Поликлета, Алкамена и постройки Акрополя, — когда мир форм античной математики и пластики достиг полного расцвета своих возможностей и также своего завершения.

Теперь представляется возможным обозреть изначальную

противоположность античной и западной духовной стихии. Во

всей картине истории высшего человечества не найдется ничего более внутренне друг другу чуждого. Именно потому, что противоположности соприкасаются и, может быть, указуют на общность сокровеннейших глубин существования, в западноевропейской фаустовской душе мы находим это странное искание и стремление к идеалам аполлоновской души, которую она одну из всех понимала и чья неизменная преданность чувственно-чистой действительности возбуждала ее зависть.

Эту, не поддающуюся более точному определению словами, душевную противоположность осуществили во внешнем мире ставшего, ограниченного, преходящего две исторические единицы, а именно античная и западная культуры, из которых одна возникла в позднемикенскую эпоху, другая в эпоху саксонских императоров, и обе закончили свое развитие в лице Аристотеля и Канта, Платона и Гёте, Фидия и Бетховена, Александра и Наполеона.

Теперь также становится понятным все значение символики, нашедшей, пожалуй, свое самое непосредственное выражение в мире чисел обеих математик, но область которой распространяется гораздо дальше. Мы видим, что математика говорит на одном языке со всеми сопутствующими искусствами и вообще со всеми созданиями повседневной жизни, на языке форм, в котором одновременно и проявляются и скрываются глубочайшие возможности душевной стихии. В ближайшем родстве с математикой — мистические архитектуры ранних периодов: дорическая; готическая, раннехристианская,

 

 

а также и египетская Древнего Царства. Здесь, на почве египетской культуры, оба мира формы никогда окончательно не разделялись. Архитектура больших пирамидных храмов есть молчаливая математика, равным образом и античная душа не проводила строгого разделения между своей символикой статуарной и геометрической. Но и анализ остался архитектурой высочайшего стиля, и мы понимаем теперь, почему эти две системы счисления, из которых одна утверждает значение границ видимого с такой же страстностью, с какой другая отрицает, должны были иметь рядом с собой связанные с ними кровными узами родства такие два искусства, как ионийская пластика и немецкая музыка, наиболее чувственная и наиболее отрицающая чувственное из всех возможных форм художественного творчества.

 

 

Уже ранее упоминалось, что для первобытного человека и

для ребенка наступает момент известного внутреннего переживания, рождения своего я, когда оба получают способность понимать феномен чисел и приобретают представление о внешнем мире по отношению к своему я.

Когда из общего хаоса впечатлений перед изумленными

глазами первобытного человека начнет выделяться в широких очертаниях этот брезжущий мир устроенных протяженностей и разумного ставшего, и глубоко ощущаемая непреодолимая противоположность этого внешнего мира и собственной души даст направление и облик сознательной жизни, одновременно, наряду со всеми возможностями новой культуры, родится прачувство тоски и стремления в этой душе, внезапно осознавшей свое одиночество. Тоска и стремление к цели становления, к завершению всех внутренних возможностей, к развитию идеи собственного существования. Тоска и стремление ребенка, все с большей ясностью вступающие в сознание в виде чувства неизбежности направления и позднее стоящие перед зрелым умом как жуткая, заманчивая, неразрешимая загадка времени. Слова «прошедшее» и «будущее» вдруг получают роковое значение.

Однако это тоскующее стремление, возникшее из полноты

и блаженства внутреннего становления, является вместе с тем в глубочайших тайниках каждой души и чувством страха. Как всякое становление имеет своей целью ставшее, в чем и находит свой конец, так прачувство становления, тоскующее стремление, уже соприкасается с чувством завершения, со страхом. В настоящем ощущается исчезновение; в прошедшем

 

 

лежит тленность. Здесь коренится вечный страх перед непоправимостью, достижением, окончательностью, перед преходящим, даже перед миром, как уже осуществленным, где рядом положены границы рождения и смерти, страх перед мгновением, когда возможное осуществлено, жизнь внутренне наполнена и закончена, когда сознание достигло своей цели. Это та глубокая боязнь мира, свойственная детской душе, которая никогда не оставляет человека высшего порядка, верующего, поэта, художника в его безграничном одиночестве, боязнь перед чуждыми силами, великими и угрожающими, облеченными в чувственные образы, вторгающимися в брезжущий мир. Равным образом, и направление всего становления в его неумолимости — необратимости — воспринимается с полной внутренней достоверностью как нечто чуждое. Что-то чуждое превращает будущее в прошедшее, и эта сторона сообщает времени, в противоположность пространству, ту полную противоречий жуткость и давящую двойственность, от которых не может вполне освободиться ни один значительный человек.

Боязнь мира, несомненно, есть наиболее творческое из

всех исконных чувствований. Ему обязан человек наиболее

зрелыми и глубокими из числа форм и образов не только сознательной внутренней жизни, но и ее отражений в бесконечных явлениях внешней культуры. Как тайная, не всем слышная мелодия проходит эта боязнь сквозь язык форм каждого настоящего произведения искусства, каждой искренней философии, каждого великого деяния, и она же лежит, чувствуемая лишь очень немногими, в основе проблем всякой математики. Только внутренне умерший человек, житель большого города поздней эпохи, птоломеевской Александрии или нынешних Парижа и Берлина, только чисто интеллектуальный софист, сенсуалист или дарвинист утрачивает или отрицает ее, водружая между собой и чуждым лишенное тайн "научное мировоззрение".

И если тоскующее стремление связано с тем необъемлемым нечто, чьи бесчисленные изменяющиеся, как Протей, образования скорей затушевываются, чем обозначаются словом «время», то исконное чувство боязни находит свое выражение в духовных, доступных, способных к восприятию образов символах протяженности. Таким образом, в бодрствующем сознании всякой культуры, принимая в каждой своеобразный характер, находят себе место противолежащие друг другу формы времени и пространства, направления и протяженности, причем первая лежит в основе второй — так же как тоскующее стремление лежит в основе боязни; это

 

стремление становится боязнью, а не наоборот: первая недоступна для силы ума, вторая служит ей, первая — переживается, вторая — познается. "Бояться и любить Бога" — вот христианское выражение для двоякого значения этих обоих чувствований мира.

В духовной жизни первобытного человечества и, следовательно, также раннего детства по отношению к элементу чуждых сил, постоянно неумолимо присутствующих во всякой протяженности, в пространстве и при посредстве пространства, пробуждается потребность подчинить их, принудить, примирить, — одним словом «познать». В сущности это одно и то же. Познать Бога на языке всякой ранней мистики значит заклясть, сделать благосклонным, присвоить его себе внутренне. Это возможно при помощи слова, «имени», которым именуют и призывают «numen», или при помощи форм культа со свойственными им тайными силами. Идеи как немецкой, так и восточной мистики, возникновение всех античных богов и культов не оставляют никакого сомнения на этот счет. Настоящее познание равносильно духовному приобщению чуждого. Такая самозащита есть первое творческое деяние каждой пробуждающейся души. С нею начинается высшая внутренняя жизнь в настоящем смысле слова всякой культуры и всякого индивидуума. Познание, установление границ при посредстве понятий и чисел, является наиболее тонкой и вместе с тем наиболее мощной формой такой защиты. В этом смысле человек становится человеком только при посредстве языка. Познание с неопределимой необходимостью превращает хаос первоначальных окружающих впечатлений в космос, в совокупность душевных выражений, "мир в себе" в "мир для нас" *. Оно успокаивает боязнь мира, подчиняя себе чуждое и таинственное, превращая его в понятную и устроенную действительность и связывая его железными правилами собственного, наложенного на него разумного языка форм.

Это та идея «табу», играющая столь значительную роль в

духовной жизни всех примитивных народов, но столь далекая

нам по своему первобытному содержанию, что это слово даже

нельзя перевести ни на один из более зрелых культурных языков. В основе его лежит такое первобытное чувство, предшествовавшее всякому познанию и пониманию окружающего мира, даже всякому ясному самосознанию, отделяющему

* От "заклятия именем" у дикарей вплоть до науки наших дней, которая подчиняет себе предметы, изобретая для них названия, понятия и определения, ничего не изменилось со стороны формы.

 

душу от мира, что среди нас, интеллектуальных жителей современного большого города, оно может быть доступным разве только детям и немногим художественным натурам. Вечная боязнь, священный трепет, глубокая беспомощность, тоска, ненависть, смутные желания приближения, соединения, удаления — все эти полные форм чувства зрелых душ сливаются в зачаточном состоянии в глухую нерешительность. Двоякий смысл слова «заклинать», значащего, с одной стороны, подчинять своей власти, с другой — умолять, поможет уяснить нам смысл мистического акта, при помощи которого первобытный человек делает чуждое и страшное «табу». Набожный страх перед всем не зависящим от человека, установленным, законосообразным, перед чуждыми силами мира, есть начало всякой элементарной формы. В первобытное время она осуществляется в гиератическом орнаменте и мелочных церемониях, строгих уставах примитивных обычаев и своеобразных культах. На ступенях высшей культуры образования эти, не утрачивая внутренних признаков своего происхождения и характера связывания и заклятия, вырастают в законченные миры форм отдельных искусств, религиозного, логического и математического мышления, экономического, политического, социального и личного быта. Их общее средство, и притом единственное, которое знает осуществляющая себя душа, есть символизирование протяженности, пространства или вещей, — будь то концепции абсолютного мирового пространства Ньютоновой физики, внутреннего облика готических соборов или мавританской мечети, атмосферической беспредельности картин Рембранта или их повторений в сумрачном мире звуков бетховенских квартетов, будь то правильные многогранники Эвклида, скульптуры Парфенона или пирамиды Древнего Египта, нирвана Будды, строгий распорядок придворных обычаев при Сезострисе, Юстиниане 1 и Людовике XIV, или, наконец, идея божества у Гомера, Плотина, Данте, или опоясывающая земной шар побеждающая пространство энергия современной техники.

 

 

Вернемся к математике. Как мы видели, исходным пунктом всякого создания форм в античности было приведение в порядок ставшего, поскольку оно является чувственным, наличным, осязаемым, измеримым, исчисляемым. Западное готическое чувство формы, чувство одиноко блуждающей по всем далям души, избрало для себя знак чистого, не наглядного

 

 

безграничного пространства. Не следует ни в коем случае вдаваться в заблуждение относительно узкой обусловленности этих символов, которые легко могут показаться идентичными и общеприменимыми. Наше бесконечное мировое пространство, о реальности существования которого, по-видимому, не приходится тратить лишних слов, не существовало для античного человека. Он даже не мог его себе представить. Эллинский космос, чуждость которого нашему способу понимания только по недоразумению оставалась так долго не замеченной, был для эллина самой очевидностью. Действительно, абсолютное пространство нашей физики есть форма, становящаяся понятной и естественной только из нашего душевного склада, как его отражение и выражение, и действительная только для нашего бодрствующего существования. Вся математика, начиная с Декарта, служит теоретическому истолкованию этого высокого символа, наполненного религиозным содержанием. Начиная с Галилея, физика также стремится только к этому. Античная же математика и физика вообще даже не знают этого объекта.


Дата добавления: 2015-08-05; просмотров: 115 | Нарушение авторских прав


Читайте в этой же книге: А.П. Дубнов, профессор НГУ | ВВЕДЕНИЕ 1 страница | ВВЕДЕНИЕ 2 страница | ВВЕДЕНИЕ 3 страница | ВВЕДЕНИЕ 4 страница | ВВЕДЕНИЕ 5 страница | ВВЕДЕНИЕ 6 страница | О СМЫСЛЕ ЧИСЕЛ 1 страница | ФИЗИОГНОМИКА И СИСТЕМАТИКА | ИДЕЯ СУДЬБЫ И ПРИНЦИП ПРИЧИННОСТИ 1 страница |
<== предыдущая страница | следующая страница ==>
О СМЫСЛЕ ЧИСЕЛ 2 страница| О СМЫСЛЕ ЧИСЕЛ 4 страница

mybiblioteka.su - 2015-2025 год. (0.021 сек.)