Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Гидравлические характеристики системы труб парового котла.

Читайте также:
  1. B.3.2 Модель системы менеджмента БТиОЗ
  2. II.ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТРАКТОРОВ СЕРИИ DONGFENG.
  3. III. СИСТЕМЫ УБЕЖДЕНИЙ И ГЛУБИННЫЕ УБЕЖДЕНИЯ
  4. V. СИСТЕМЫ УБЕЖДЕНИЙ И ВЗАИМООТНОШЕНИЯ
  5. V. Условия использования данных каротажа для выявления и характеристики разрывных нарушений
  6. V1. Случайные величины и их характеристики.
  7. V2: Органы нервной системы

В предыдущих разделах рассматривалась гидравлическая характеристика одиночной трубы. Элементы парового котла (поверхности нагрева, соединительные трубопроводы) выполняются из ряда параллельно включенных труб, а сами элементы могут быть соединены как параллельно, так и последовательно. В зависимости от схемы соединения суммирование гидравлических характеристик отдельных труб производится различными способами. При последовательном включении труб или элементов суммирование производится при одинаковых расходах среды (рис.9.22а): сопротивление двух или более последовательно включенных труб равно сумме их сопротивлений (Δр = ΣΔpi при G = const). При параллельном соединении труб или элементов (рис.9.22а) перепад давления на них одинаков, но расход равен сумме расходов по отдельным трубам (G = ΣGi, при Δр = const).

Сравним режим работы одиночной трубы и трубы в элементе (системе труб), имеющих многозначные гидравлические характеристики (рис.9.23). В одиночной трубе расход среды может изменяться за счет производительности насоса непрерывно от нуля до G6, перепад давления на трубе будет изменяться в соответствии с характеристикой 0 - 1 - 2 - 3 - 4 - 5 - 6 (рис.9.23а).

При увеличении расхода среды в элементе будет увеличиваться и расход в каждой из труб. Считаем, что все трубы элемента имеют аналогичные гидравлические характеристики (рис.9.23б).

При увеличении расхода до G3 расход по всем трубам одинаков. Дальнейшее повышение расхода (G > G3) в элементе приводит к тому, что расход среды в трубах будет различным - в ряде труб G3, в других G5. Причем в зависимости от режима работы котла в одной и той же трубе может быть то G3, то G5, т.е. может возникнуть пульсация расхода среды в трубах. В трубах с меньшим расходом среды и при режиме пульсации надежность работы труб и элемента в целом снижается. При достижении среднего расхода в элементе величины G5 трубы элемента опять выходят на устойчивый, однозначный режим работы. Таким образом, при подъеме нагрузки участок характеристики G3 - G5 не реализуется, в этом диапазоне работа элемента носит неустойчивый характер, опасный для надежности работы труб.

При понижении расхода в элементе на участках 6 - 5 - 4 и 2 - 1 - 0 (рис.9.23б) наблюдается устойчивая работа труб, а в диапазоне расходов G4 - G2 - неустойчивый режим работы, с расходом в разных трубах G4 или G2. Опускной участок характеристики 3 - 4 обычно не реализуется, за исключением случаев, когда число параллельных труб не превышает трех - четырех. При этом расходы среды в трубах соответствуют точкам 8 или 9.

Таким образом, устойчивая работа труб в элементе обеспечивается на подъемных участках гидравлической характеристики (0 - 1 - 2 - 3 и 4 - 5 - 6). Левая ветвь характеристики имеет существенно меньший расход среды и, как правило, не может обеспечить надежный температурный режим труб. Правая ветвь имеет большой расход среды, температурный режим труб здесь выдерживается.

Устойчивая работа труб в элементе обеспечивается, прежде всего, правильным выбором расхода среды, массовой скорости в элементе, уменьшением неравномерности тепловосприятия между трубами, их конструктивной тождественностью, выбором конструкции элемента. В исключительных случаях выравнивание расхода среды по трубам добиваются установкой дроссельных шайб.

Неравномерность расхода среды между трубами в элементе котла, вызванную неодинаковыми гидравлическими характеристиками труб, называют межтрубной разверкой.

В паровых котлах широко практикуется выполнение поверхностей нагрева (НРЧ, СРЧ, ВРЧ, контуры циркуляции и т.д.) из отдельных элементов (панелей), которые соединяются между собой параллельно (рис.9.24). Точки А и Б являются общими для них. Для каждой из трех панелей вместе с их подводящими и отводящими трубами могут быть построены гидравлические характеристики. По этим характеристикам рассчитывается распределение среды по панелям (межпанельная разверка). При неправильном конструктивном выполнении такой схемы (рис. 9.24а, рис. 9.24б) может случиться, что, несмотря на однозначную характеристику самой панели, вся система (подводящие трубы - панель - отводящие трубы) между точками А и Б будет иметь многозначную характеристику (рис.9.24а соответствует П-схеме; рис.9.24б - U - схеме).

При построении гидравлической характеристики вертикального элемента графики для зависимостей от расхода среды ΔpГ, ΔpНИВ и суммы Δp = ΔpГ + ΔpНИВ строятся так же, как и для одиночной вертикальной трубы (рис.9.25).

Для отрицательного (обратного) расхода среды в какой-либо трубе рассчитываются ΔpГ и ΔpНИВ и их разность по формулам для опускного движения в вертикальной трубе, но расход среды принимается с отрицательным знаком.

Графики получаются аналогичными, но повернутыми на 180° относительно центра осей. Еще одна особенность построения графиков при G < 0: рабочая среда поступает в трубы с опускным движением из верхнего коллектора, где ее энтальпия выше, чем на входе в панель. Энтальпия на входе трубы с опускным движением hОПВХ близка к энтальпии на выходе из всего элемента (hОПВХ ≈ hВЫХ). Следовательно, удельный объем в такой опускной трубе будет больше (ΔpГ больше), а плотность среды - меньше (ΔpНИВ меньше), чем в подъемных трубах.

В отличие от гидравлической характеристики одиночной вертикальной трубы с подъемным движением (см. рис.9.18), в характеристике системы труб (рис.9.25) появляется зона неоднозначности (границы ее: по перепаду давления от Δp2 до Δp1, по расходу среды - от GОПМИН до GПМИН, где одному перепаду давления отвечают три расхода среды - два отрицательных и один положительный. Из графика видно, что однозначное подъемное движение среды будет при G > GПМИН, а однозначное опускное движение - при

Полная гидравлическая характеристика элемента показывает, что при малых расходах через него (Δр < Δр1) в некоторых трубах возможно опускное движение среды, т.е. произойдет так называемое опрокидывание движения среды. Возможны случаи застоя движения, когда в трубе G = 0. Необходимо иметь в виду, что эти выводы сделаны по гидравлической характеристике, при построении которой не было ограничений по давлению (докритическое или сверхкритическое) и по характеру движущих сил (принудительное движение или естественная циркуляция). Следовательно, застой или опрокидывание движения среды в вертикальных панелях возможны во всех этих случаях.

 

 


Дата добавления: 2015-07-26; просмотров: 89 | Нарушение авторских прав


Читайте в этой же книге: Уравнение энергии. | Уравнение движения однофазного потока в трубах. | Уравнение движения двухфазного потока в трубах. | Режимы течения двухфазного потока. | Перепад давления при движении рабочей среды в трубе. | Виды движения жидкости. | Теплогидравлические характеристики поверхностей нагрева парового котла. | Гидравлическая характеристика горизонтальных необогреваемых труб | Гидравлическая характеристика горизонтальных обогреваемых труб | Влияние конструктивных и режимных факторов на гидравлическую характеристику горизонтальных необогреваемых и обогреваемых труб |
<== предыдущая страница | следующая страница ==>
Гидравлические характеристики вертикальных одиночных труб.| Гидравлическая разверка в системе труб парового котла.

mybiblioteka.su - 2015-2025 год. (0.006 сек.)