Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

The Chain Rule

Читайте также:
  1. Это скрин кошелька в системе Blockchain.

D2. Differentiation Rules Continued

If , then can be said to be a function of . If you let then:

where

 

is now a function of , and is a function of . The new variable, , is the link between the two expressions.

 

To differentiate the expression with respect to , you would first need to expand the bracket. In this particular case, it would not be too difficult, however if the expression was , it would involve much more work. The chain rule allows us to differentiate such expressions more easily.

 

The Chain Rule

If where , and and are differentiable,

then is a differentiable function of and:

 

 

Using the example above of ,

where

Differentiating with respect to gives: Differentiating with respect to gives:

 

 

By the chain rule,

=

 

 

Ex.1. Find if:

a. b.

 

 

c. d.

 

 

Ex.2. Differentiate the following functions:

a. b.

 

 


Дата добавления: 2015-07-20; просмотров: 93 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
II. QUOTIENT RULE| БЕЗОПАСНАЯ ЭКСПЛУАТАЦИЯ

mybiblioteka.su - 2015-2024 год. (0.005 сек.)