Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Металлические усы

Читайте также:
  1. Колпаки металлические
  2. КРОВАТИ МЕТАЛЛИЧЕСКИЕ.
  3. МЕТАЛЛИЧЕСКИЕ ВОЗДУХОВОДЫ.
  4. Металлические сплавы
  5. Неметаллические конструкционные и эксплуатационные материалы
  6. Неметаллические полезные ископаемые

Это произошло в Англии во время второй мировой вой­ны. Новые, весьма необходимые автоматические приборы, использующиеся в военной технике, выходили из строя один за другим — замыкались контакты. Причину замыкания долго найти не могли. Наконец, после тщательного наблюдения установили: виновники аварии — тонкие волоски олова, выступавшие на тончайшей оловянной пленке, нанесенной на сталь. Волоски состригли, и приборы начали работать. Через некоторое время контакты вновь замкнулись, и исследователи опять обнаружили все те же волоски олова. Сколько их в дальнейшем ни «стригли», они вырастали вновь. Волоски были названы усами. После войны многие ученые начали исследовать причины появления усов, определять их свойства. Ус имел толщину около 1,5 мк. Оказалось, что тончайший ус обладал колоссальной прочностью. Если бы такой волосок имел сечение в 1 мм2, он бы выдержал нагрузку в несколько сот килограммов! Это значит, что прочность металла близка к теоретической. Рентгеноструктурный анализ помог разгадать чудесные свойства усов: они представляли собой почти бездефектные, «идеальные» монокристаллы чистого олова! Как показали дальнейшие эксперименты, отсутствие дефектов в усах объяснялось условиями их роста и малыми размерами. Они росли столь быстро, что дефекты просто не успевали возникнуть. Стоило увеличить размеры усов, дефекты кристаллической решетки появлялись, и прочность резко падала. Было обнаружено, что усы даже после рождения могут быстро «портиться» за счет появления примесей в результате окисления их поверхности. Поэтому надо было принимать специальные меры для хранения выращенных усов. Поскольку усы состояли из отдельных нитей, их назвали также нитевидными кристаллами. Сегодня существует более 100 способов получения монокристаллов. Наиболее совершенными свойствами обладают нитевидные кристаллы, полученные осаждением из газовой фазы. В трубчатую печь помещают алундовую или кварцевую лодочку с хлористой солью металла. При нагреве происходит возгонка соли. Через печь пропускают водород, который восстанавливает соль до металла. Нитевидные кристаллы появляются на стенках лодочки в виде пушистых наростов — усов. Рост нитевидных кристаллов связан с влажностью, чистотой и количеством соли, стабильностью режима восстановления. Определяющими всегда являются температура и скорость восстановления. В Советском Союзе в 60-х годах Е. М. Савицкий с сотрудниками получил нитевидные кристаллы почти всех тугоплавких металлов. В настоящее время полу­чают нитевидные кристаллы чистых металлов размером 2—10 мм и толщиной от 0,5 до 2,0 мк, практически лишенные дефектов кристаллической решетки. Эти монокристаллы обладают прочностью, близкой к теоретической. Так, например, предел прочности монокристал­лов железа составляет 13 000 МПа, меди — 3000 и цин­ка 2000 МПа, в то время как техническое железо имеет предел прочности 300 МПа, медь — 250 и цинк 180 МПа. Исследование поверхности нитевидных кристаллов показало, что она не имеет микроскопических трещин, остается «атомно гладкой». Кристаллическая решетка усов характеризуется почти полным отсутствием дислокации. Таким образом, отсутствие в металле приме­сей при определенных условиях обеспечивает бездефектную структуру его кристаллов. Бездефектная структура чистых («однородных») металлов является надежным способом повышения их прочности. Вот они, современные булаты С современной точки зрения булат — композиционный материал, состоящий из двух металлических фаз. Одна из фаз — мягкое железо, другая — высокоуглеродистая сталь. Таким образом, булат представляет собой объем­ное сочетание разнородных компонентов, один из которых пластичный, а другой обладает высокой прочностью. В «Основных направлениях экономического и социального развития СССР на 1981—1985 годы и на период до 1990 года» предусматривается дальнейшее повыше­ние качества продукции на основе всемерного использования достижений научно-технического прогресса. Большое внимание при этом обращается на улучшение качества металлов и сплавов с целью обеспечения их высокой прочности, износостойкости, долговечности, коррозиестойкости. Одним из перспективных путей решения этих задач является создание композиционных материалов. Очень близки по своему строению к булату так называемые естественные композиционные стали, представляющие собой композиции из мягкой матрицы и распределенных в ней высокопрочных волокон второй фазы, значительно более прочной, чем сама матрица. Подобно тому как в древности люди присматривались к волокнам древесины, чтобы научиться ковкой повышать прочность железа, в наше время — стремятся заимствовать у природы строение и свойства композиционных материалов. Только делается это на высокой научной основе. Известно, что древесина представляет собой композицию целлюлозы с лигнином. Волокна целлюлозы обладают высокой прочностью на разрыв, но низкой на срез. Лигнин связывает волокна в единое целое и сообщает древесине жесткость. На этом принципе и были созданы новые материалы, представляющие собой композицию из мягкой основы (матрицы) и высокопрочных волокон или пластин, выполняющих роль ее арматуры. В таком материале, так же как и в древесине, основную часть нагрузки воспринимают волокна, а матрица служит средой, передающей нагрузку от одного волокна к другому. Во всяком компактном материале, например в легированных сталях и сплавах, нагрузку воспринимает материал в целом. Поэтому возникшая трещина быстро распространяется и приводит к хрупкому разрушению металла. Чем выше прочность материала, тем меньше его сопротивление хрупкому разрушению. В композиционном материале трещина, возникшая при разрушении прочного волокна или пластины, гасится мягкой матрицей. Поэтому наряду с высокой прочностью такие материалы обладают и высокой вязкостью, и в этом отношении они также как бы продолжают традиционные свойства булатной стали. Любая доэвтектоидная сталь после закалки по определенному режиму может иметь феррито-мартенситную структуру. Но это еще не композиционный материал. Как же превратить его в композит? Для этого необходимо, чтобы участки мартенсита были слоистыми, то есть имели соизмеримые размеры в двух направлениях и намного меньший размер в третьем. Такую структуру получают при помощи термомеханической обработки. Для получения композиций с направленной феррито-мартенситной структурой доэвтектоидную сталь про­катывают при температуре, обеспечивающей ей двухфазную структуру — аустенит и феррит (рис. 2). Непосредственно после прокатки сталь закаливают, и слои аустенита превращаются в мартенсит, а феррит остается в прежнем состоянии. Это и приводит к образованию композиции из слоистого мартенсита, расположенного в мягкой ферритной матрице. Так же как и булатная структура, структура композиционной феррито-мартенситной стали обеспечивает увеличение ее прочности более чем в 2 раза по сравнению с обычной сталью такого же состава. Так же как и в булате, прочные, твердые слои мартенсита соединены с мягкой пластичной ферритной матрицей, и в связи с этим композиционная сталь имеет более высокую вязкость и смещение порога хрупкого разрушения к более низким температурам. Знаменательно, что идеи Д. К. Чернова о возможности получения булатной структуры, используя структуру эвтектоидного или эвтектического типа, практически полностью воспроизведены в так называемых эвтектических и эвтектоидных композициях. Получение этих композиций связано с использованием различных фазовых превращений в сплавах, в частности с кристаллизацией жидкости (эвтектическое превращение) или с превращением в твердом состоянии (эвтектоидный распад). В результате эвтектического превращения в системе образуются две или более твердые фазы, выпадаемые одновременно в виде механической смеси, называемой эвтектикой. Одним из наиболее изученных и перспективных способов создания композиционных сплавов такого типа является направленная кристаллизация. Этот способобеспечивает достаточно резко выраженную физически неоднородную структуру со строгой ориентацией фаз в пространстве. В эвтектических композициях реализуется идеальная структура — высокопрочные нитевидные кристаллы армируют пластичную и вязкую матрицу. Не может быть сомнений в том, что, если бы П. П. Аносову предъявили такую структуру, он ее тотчас же назвал бы булатом...


Дата добавления: 2015-07-20; просмотров: 176 | Нарушение авторских прав


Читайте в этой же книге: Златоустовская сталь | Рецепт есть, булата нет | Узорчатая сталь? Сколько угодно! | Перламутровая теория булата | Поиск продолжается | Как профессор Виноградов прочитал Аносова | Вутцы XX столетия | Булатные узоры | Секреты булата | Наследники булата |
<== предыдущая страница | следующая страница ==>
Однородность или неоднородность?| Твердые, как алмазы

mybiblioteka.su - 2015-2024 год. (0.006 сек.)